Using Analytics to Drive Customer Experience Decisions

Explore top LinkedIn content from expert professionals.

Summary

Using analytics to drive customer experience decisions involves analyzing data from customer interactions to make informed choices that improve their overall experience. By leveraging advanced tools like real-time behavior tracking, predictive modeling, and sentiment analysis, businesses can shift from reactive to proactive strategies that enhance customer satisfaction and retention.

  • Tap into behavioral data: Look beyond traditional surveys and utilize data from customer actions, such as website behavior or app usage, to uncover hidden friction points and improve the experience.
  • Adopt AI-powered tools: Use AI-driven analytics, like sentiment analysis and predictive models, to identify trends, predict customer needs, and proactively address issues before they lead to churn.
  • Personalize customer interactions: Utilize insights from analytics to tailor communication, product recommendations, and support to meet individual customer needs and expectations.
Summarized by AI based on LinkedIn member posts
  • View profile for Bill Staikos
    Bill Staikos Bill Staikos is an Influencer

    Advisor | Consultant | Speaker | Be Customer Led helps companies stop guessing what customers want, start building around what customers actually do, and deliver real business outcomes.

    24,103 followers

    Surveys can serve an important purpose. We should use them to fill holes in our understanding of the customer experience or build better models with the customer data we have. As surveys tell you what customers explicitly choose to share, you should not be using them to measure the experience. Surveys are also inherently reactive, surface level, and increasingly ignored by customers who are overwhelmed by feedback requests. This is fact. There’s a different way. Some CX leaders understand that the most critical insights come from sources customers don’t even realize they’re providing from the “exhaust” of every day life with your brand. Real-time digital behavior, social listening, conversational analytics, and predictive modeling deliver insights that surveys alone never will. Voice and sentiment analytics, for example, go beyond simply reading customer comments. They reveal how customers genuinely feel by analyzing tone, frustration, or intent embedded within interactions. Behavioral analytics, meanwhile, uncover friction points by tracking real customer actions across websites or apps, highlighting issues users might never explicitly complain about. Predictive analytics are also becoming essential for modern CX strategies. They anticipate customer needs, allowing businesses to proactively address potential churn, rather than merely reacting after the fact. The capability can also help you maximize revenue in the experiences you are delivering (a use case not discussed often enough). The most forward-looking CX teams today are blending traditional feedback with these deeper, proactive techniques, creating a comprehensive view of their customers. If you’re just beginning to move beyond a survey-only approach, prioritizing these more advanced methods will help ensure your insights are not only deeper but actionable in real time. Surveys aren’t dead (much to my chagrin), but relying solely on them means leaving crucial insights behind. While many enterprises have moved beyond surveys, the majority are still overly reliant on them. And when you get to mid-market or small businesses? The survey slapping gets exponentially worse. Now is the time to start looking beyond the questionnaire and your Likert scales. The email survey is slowly becoming digital dust. And the capabilities to get you there are readily available. How are you evolving your customer listening strategy beyond traditional surveys? #customerexperience #cxstrategy #customerinsights #surveys

  • View profile for Wai Au

    Customer Success & Experience Executive | AI Powered VoC | Retention Geek | Onboarding | Product Adoption | Revenue Expansion | Customer Escalations | NPS | Journey Mapping | Global Team Leadership

    6,445 followers

    ❌ Smart CX Leaders Don’t Read a Million NPS Comments—They Model Them ✅ CX Opportunity: Use AI to Make Millions of Voices Actionable Too many CX leaders especially those in B2C fall into this trap: They launch an NPS survey to millions of customers… Then try to read through open-text comments manually or rely on spreadsheets and gut feel. 🚨 The result? Delays, missed trends, and zero scalability. Here’s the truth: 📊 When you have thousands—or millions—of NPS responses, manual review is NOT customer-centric. It’s a bottleneck. 🔧 The Better Way: Build an AI-Powered Text Analytics Engine Here's what leading CX teams are doing instead: 1. Data Collection: Centralize all NPS feedback (across web, app, email, etc.) in one place. 2. Text Preprocessing: Clean the data—remove noise, standardize language, and strip out irrelevant content. 3. Theme Detection (Unsupervised ML): Use clustering or topic modeling (e.g., LDA) to uncover emerging themes—without needing to predefine them. 4. Sentiment & Emotion Analysis: Layer in NLP models to detect tone and intensity—distinguishing between frustration, confusion, and delight. 5. Custom Tagging Model (Supervised ML): Train AI to tag comments by product areas, issues, personas, or root causes using historical data and human-labeled examples. 6. Trend Monitoring + Alerting: Get real-time signals when negative themes spike or high-value customers comment on broken moments. 7. Dashboards that Drive Action: Turn unstructured feedback into structured insight that product, ops, and CX teams can act on—weekly. 💡 The result? You go from drowning in feedback to scaling insights. From reactive reading… to proactive resolution. 👉 If your NPS program feels like a reporting tool, not a growth engine—AI might be the missing piece. #CustomerExperience #CXStrategy #NPS #AI #VoiceOfCustomer #TextAnalytics #CustomerInsights #CustomerCentricity #CXLeadership

  • View profile for Stan Hansen

    Chief Operating Officer at Egnyte

    8,695 followers

    For SaaS companies, customer churn is closely tied to growth. From an industry standpoint, the average churn rate for mid-market companies is between 12% and 13%. With renewal-based revenue models, churn directly affects both topline and bottom line. At Egnyte, AI and Machine Learning have been pivotal in our journey to improving customer retention and reducing churn. We have noted a 2.5 to 3 points reduction in churn rate by deploying AI programs that are actionable for both our customers and CSM teams. AI can offer powerful capabilities to help SaaS companies significantly reduce churn by enabling proactive and data-driven customer retention strategies. Some of these strategies are: 1. Predictive Churn Analytics Machine Learning models analyze vast amounts of customer data (usage patterns, support interactions, billing history, feature adoption, login frequency, etc.) to identify subtle patterns that precede churn. They can flag customers as "at-risk" before they can explicitly signal dissatisfaction, allowing for proactive intervention. It can further assign a "churn risk score" to each customer/ user, enabling customer success teams to prioritize their efforts on the most vulnerable and valuable accounts. The actionable operational data that we received by employing ML is the essence of churn analytics. 2. Hyper-Personalized Customer Experiences AI allows SaaS companies to move beyond generic communication to highly tailored interactions based on user behavior and feature adoption. AI can suggest relevant features, integrations, or workflows that the user might find valuable but hasn't yet discovered. AI can also determine the optimal timing and channel of customer-focused content, such as help desk articles, feature awareness videos, and case studies. 3. Automated Customer Support and Engagement AI can enhance customer support, making it more efficient and impactful. AI-powered chatbots can handle common customer queries 24/7, reducing wait times and providing instant solutions. Advanced chatbots use Natural Language Processing (NLP) to understand complex queries and provide personalized responses. It also helps in online enablement, reducing onboarding costs. While these strategies are already redefining the way CSM and enablement teams service customers, their significance in the cadence of customer retention strategies is going to increase hereon. Enterprises need to use AI intelligently and efficiently and focus on gleaning actionable insights from their AI strategies. #B2BSaaS #Churn #CustomerRetention

Explore categories