How to Understand Artificial Intelligence as an Engineer

Explore top LinkedIn content from expert professionals.

Summary

Understanding artificial intelligence (AI) as an engineer involves grasping how AI technologies like large language models, machine learning workflows, and agent-based systems operate, and how to effectively design, deploy, and optimize these systems for real-world applications.

  • Build foundational knowledge: Start by mastering essential skills such as Python programming, basic mathematics, and the evolution of AI systems to understand how they function and are developed.
  • Focus on modern AI tools: Learn to work with tools like OpenAI APIs, LangChain, and TensorFlow to build, fine-tune, and deploy AI models for practical use cases.
  • Create production-ready AI systems: Explore MLOps, security measures, and deployment techniques to ensure that your AI applications are scalable, reliable, and aligned with real-world needs.
Summarized by AI based on LinkedIn member posts
  • View profile for Chandrasekar Srinivasan

    Engineering and AI Leader at Microsoft

    46,263 followers

    I spent 3+ hours in the last 2 weeks putting together this no-nonsense curriculum so you can break into AI as a software engineer in 2025. This post (plus flowchart) gives you the latest AI trends, core skills, and tool stack you’ll need. I want to see how you use this to level up. Save it, share it, and take action. ➦ 1. LLMs (Large Language Models) This is the core of almost every AI product right now. think ChatGPT, Claude, Gemini. To be valuable here, you need to: →Design great prompts (zero-shot, CoT, role-based) →Fine-tune models (LoRA, QLoRA, PEFT, this is how you adapt LLMs for your use case) →Understand embeddings for smarter search and context →Master function calling (hooking models up to tools/APIs in your stack) →Handle hallucinations (trust me, this is a must in prod) Tools: OpenAI GPT-4o, Claude, Gemini, Hugging Face Transformers, Cohere ➦ 2. RAG (Retrieval-Augmented Generation) This is the backbone of every AI assistant/chatbot that needs to answer questions with real data (not just model memory). Key skills: -Chunking & indexing docs for vector DBs -Building smart search/retrieval pipelines -Injecting context on the fly (dynamic context) -Multi-source data retrieval (APIs, files, web scraping) -Prompt engineering for grounded, truthful responses Tools: FAISS, Pinecone, LangChain, Weaviate, ChromaDB, Haystack ➦ 3. Agentic AI & AI Agents Forget single bots. The future is teams of agents coordinating to get stuff done, think automated research, scheduling, or workflows. What to learn: -Agent design (planner/executor/researcher roles) -Long-term memory (episodic, context tracking) -Multi-agent communication & messaging -Feedback loops (self-improvement, error handling) -Tool orchestration (using APIs, CRMs, plugins) Tools: CrewAI, LangGraph, AgentOps, FlowiseAI, Superagent, ReAct Framework ➦ 4. AI Engineer You need to be able to ship, not just prototype. Get good at: -Designing & orchestrating AI workflows (combine LLMs + tools + memory) -Deploying models and managing versions -Securing API access & gateway management -CI/CD for AI (test, deploy, monitor) -Cost and latency optimization in prod -Responsible AI (privacy, explainability, fairness) Tools: Docker, FastAPI, Hugging Face Hub, Vercel, LangSmith, OpenAI API, Cloudflare Workers, GitHub Copilot ➦ 5. ML Engineer Old-school but essential. AI teams always need: -Data cleaning & feature engineering -Classical ML (XGBoost, SVM, Trees) -Deep learning (TensorFlow, PyTorch) -Model evaluation & cross-validation -Hyperparameter optimization -MLOps (tracking, deployment, experiment logging) -Scaling on cloud Tools: scikit-learn, TensorFlow, PyTorch, MLflow, Vertex AI, Apache Airflow, DVC, Kubeflow

  • View profile for Brij kishore Pandey
    Brij kishore Pandey Brij kishore Pandey is an Influencer

    AI Architect | Strategist | Generative AI | Agentic AI

    690,001 followers

    The GenAI wave is real, but most engineers still feel stuck between hype and practical skills. That’s why I created this 15-step roadmap—a clear, technically grounded path to transitioning from traditional software development to advanced AI engineering. This isn’t a list of buzzwords. It’s the architecture of skills required to build agentic AI systems, production-grade LLM apps, and scalable pipelines in 2025. Here’s what this journey actually looks like: 🔹 Foundation Phase (Steps 1–5): → Start with Python + libraries (NumPy, Pandas, etc.) → Brush up on data structures & Big-O — still essential for model efficiency → Learn basic math for AI (linear algebra, stats, calculus) → Understand the evolution of AI from rule-based to supervised to agentic systems → Dive into prompt engineering: zero-shot, CoT, and templates with LangChain 🔹 Build & Integrate (Steps 6–10): → Work with LLM APIs (OpenAI, Claude, Gemini) and use function calling → Learn RAG: embeddings, vector DBs, LangChain chains → Build agentic workflows with LangGraph, CrewAI, and AutoGen → Understand transformer internals (positional encoding, masking, BERT to LLaMA) → Master deployment with FastAPI, Docker, Flask, and Streamlit 🔹 Production-Ready (Steps 11–15): → Learn MLOps: versioning, CI/CD, tracking with MLflow & DVC → Optimize for real workloads using quantization, batching, and distillation (ONNX, Triton) → Secure AI systems against injection, abuse, and hallucination → Monitor LLM usage and performance → Architect multi-agent systems with state control and memory Too many “AI tutorials” skip the real-world complexity, including permissioning, security, memory, token limits, and agent orchestration. But that’s what actually separates a prototype from a production-grade AI app. If you’re serious about becoming an AI Engineer, this is your blueprint. And yes, you can start today. You just need a structured plan and consistency. Feel free to save, share, or tag someone on this journey.

  • View profile for Aishwarya Srinivasan
    Aishwarya Srinivasan Aishwarya Srinivasan is an Influencer
    595,162 followers

    If you’re an AI engineer, understanding how LLMs are trained and aligned is essential for building high-performance, reliable AI systems. Most large language models follow a 3-step training procedure: Step 1: Pretraining → Goal: Learn general-purpose language representations. → Method: Self-supervised learning on massive unlabeled text corpora (e.g., next-token prediction). → Output: A pretrained LLM, rich in linguistic and factual knowledge but not grounded in human preferences. → Cost: Extremely high (billions of tokens, trillions of FLOPs). → Pretraining is still centralized within a few labs due to the scale required (e.g., Meta, Google DeepMind, OpenAI), but open-weight models like LLaMA 4, DeepSeek V3, and Qwen 3 are making this more accessible. Step 2: Finetuning (Two Common Approaches) → 2a: Full-Parameter Finetuning - Updates all weights of the pretrained model. - Requires significant GPU memory and compute. - Best for scenarios where the model needs deep adaptation to a new domain or task. - Used for: Instruction-following, multilingual adaptation, industry-specific models. - Cons: Expensive, storage-heavy. → 2b: Parameter-Efficient Finetuning (PEFT) - Only a small subset of parameters is added and updated (e.g., via LoRA, Adapters, or IA³). - Base model remains frozen. - Much cheaper, ideal for rapid iteration and deployment. - Multi-LoRA architectures (e.g., used in Fireworks AI, Hugging Face PEFT) allow hosting multiple finetuned adapters on the same base model, drastically reducing cost and latency for serving. Step 3: Alignment (Usually via RLHF) Pretrained and task-tuned models can still produce unsafe or incoherent outputs. Alignment ensures they follow human intent. Alignment via RLHF (Reinforcement Learning from Human Feedback) involves: → Step 1: Supervised Fine-Tuning (SFT) - Human labelers craft ideal responses to prompts. - Model is fine-tuned on this dataset to mimic helpful behavior. - Limitation: Costly and not scalable alone. → Step 2: Reward Modeling (RM) - Humans rank multiple model outputs per prompt. - A reward model is trained to predict human preferences. - This provides a scalable, learnable signal of what “good” looks like. → Step 3: Reinforcement Learning (e.g., PPO, DPO) - The LLM is trained using the reward model’s feedback. - Algorithms like Proximal Policy Optimization (PPO) or newer Direct Preference Optimization (DPO) are used to iteratively improve model behavior. - DPO is gaining popularity over PPO for being simpler and more stable without needing sampled trajectories. Key Takeaways: → Pretraining = general knowledge (expensive) → Finetuning = domain or task adaptation (customize cheaply via PEFT) → Alignment = make it safe, helpful, and human-aligned (still labor-intensive but improving) Save the visual reference, and follow me (Aishwarya Srinivasan) for more no-fluff AI insights ❤️ PS: Visual inspiration: Sebastian Raschka, PhD

Explore categories