Navigating AI Transformation

Explore top LinkedIn content from expert professionals.

  • In January, everyone signs up for the gym, but you're not going to run a marathon in two or three months. The same applies to AI adoption. I've been watching enterprises rush into AI transformations, desperate not to be left behind. Board members demanding AI initiatives, executives asking for strategies, everyone scrambling to deploy the shiniest new capabilities. But here's the uncomfortable truth I've learned from 13+ years deploying AI at scale: Without organizational maturity, AI strategy isn’t strategy — it’s sophisticated guesswork. Before I recommend a single AI initiative, I assess five critical dimensions: 1. 𝗜𝗻𝗳𝗿𝗮𝘀𝘁𝗿𝘂𝗰𝘁𝘂𝗿𝗲: Can your systems handle AI workloads? Or are you struggling with basic data connectivity? 2. 𝗗𝗮𝘁𝗮 𝗲𝗰𝗼𝘀𝘆𝘀𝘁𝗲𝗺: Is your data accessible? Or scattered across 76 different source systems? 3. 𝗧𝗮𝗹𝗲𝗻𝘁 𝗮𝘃𝗮𝗶𝗹𝗮𝗯𝗶𝗹𝗶𝘁𝘆: Do you have the right people with capacity to focus? Or are your best people already spread across 14 other strategic priorities? 4. 𝗥𝗶𝘀𝗸 𝘁𝗼𝗹𝗲𝗿𝗮𝗻𝗰𝗲: Is your culture ready to experiment? Or is it still “measure three times, cut once”? 5. 𝗙𝘂𝗻𝗱𝗶𝗻𝗴 𝗮𝗹𝗶𝗴𝗻𝗺𝗲𝗻𝘁: Are you willing to invest not just in tools, but in the foundational capabilities needed for success? This maturity assessment directly informs which of five AI strategies you can realistically execute: - Efficiency-based - Effectiveness-based - Productivity-based - Growth-based - Expert-based Here's my approach that's worked across 39+ production deployments: Think big, start small, scale fast. Or more simply: 𝗖𝗿𝗮𝘄𝗹. 𝗪𝗮𝗹𝗸. 𝗥𝘂𝗻. The companies stuck in POC purgatory? They sprinted before they could stand. So remember: AI is a muscle that has to be developed. You don't go from couch to marathon in a month, and you don't go from legacy systems to enterprise-wide AI transformation overnight. What's your organization's AI fitness level? Are you crawling, walking, or ready to run?

  • View profile for Elaine Page

    Chief People Officer | P&L & Business Leader | Board Advisor | Culture & Talent Strategist | Growth & Transformation Expert | Architect of High-Performing Teams & Scalable Organizations

    29,907 followers

    I asked the smartest people I know about AI... I’ve been reading everything I can get my hands on. Talking to AI founders, skeptics, operators, and dreamers. And having some very real conversations with people who’ve looked me in the eye and said: “This isn’t just a tool shift. It’s a leadership reckoning.” Oh boy. Another one eh? Alright. I get it. My job isn’t just to understand disruption. It’s to humanize it. Translate it. And make sure my teams are ready to grow through it and not get left behind. So I asked one of my most fav CEOs, turned investor - a sharp, no-BS mentor what he would do if he were running a company today. He didn’t flinch. He gave me a crisp, practical, people-centered roadmap. “Here’s how I’d lead AI transformation. Not someday. Now.” I’ve taken his words, built on them, and I’m sharing my approach here, not as a finished product, but as a living, evolving plan I’m adopting and sharing openly to refine with others. This plan I believe builds capability, confidence, and real business value: 1A. Educate the Top. Relentlessly. Every senior leader must go through an intensive AI bootcamp. No one gets to opt out. We can’t lead what we don’t understand. 1B. Catalog the problems worth solving. While leaders are learning, our best thinkers start documenting real challenges across the business. No shiny object chasing, just a working list of problems we need better answers for. 2. Find the right use cases. Map AI tools to real problems. Look for ways to increase efficiency, unlock growth, or reduce cost. And most importantly: communicate with optimism. AI isn’t replacing people, it’s teammate technology. Say that. Show that. 3. Build an AI Helpdesk. Recruit internal power users and curious learners to be your “AI Coaches.” Not just IT support - change agents. Make it peer-led and momentum-driven. 4. Choose projects with intention. We need quick wins to build energy and belief. But you need bigger bets that push the org forward. Balance short-term sprints with long-term missions. 5. Vet your tools like strategic hires. The AI landscape is noisy. Don’t just chase features. Choose partners who will evolve with you. Look for flexibility, reliability, and strong values alignment. 6. Build the ethics framework early. AI must come with governance. Be transparent. Be intentional. Put people at the center of every decision. 7. Reward experimentation. This is the messy middle. People will break things. Celebrate the ones who try. Make failing forward part of your culture DNA. 8. Scale with purpose. Don’t just track usage. Track value. Where are you saving time? Where is productivity up? Where is human potential being unlocked? This is not another one-and-done checklist. Its my AI compass. Because AI transformation isn’t just about tech adoption. It’s about trust, learning, transparency, and bringing your people with you. Help me make this plan better? What else should I be thinking about?

  • View profile for Allie K. Miller
    Allie K. Miller Allie K. Miller is an Influencer

    #1 Most Followed Voice in AI Business (2M) | Former Amazon, IBM | Fortune 500 AI and Startup Advisor, Public Speaker | @alliekmiller on Instagram, X, TikTok | AI-First Course with 200K+ students - Link in Bio

    1,603,691 followers

    Been perfecting this small team AI methodology, and it’s incredibly effective. Get 4-8 people together, at least one technical and at least one subject matter expert, and sprint together with paid AI tools (free tools are fun for experiments, not for business). Start with a multi-hour shareout (with AI recording and transcribing!) of the SME sharing the latest in their field, the work the company is doing, the blockers the company has, what you would share if you were onboarding someone new and wanted them to succeed. Then have the dev/SWE/SA/DS do the same. Be sure to include what tools and resources are available, what is actually used in your company’s stack, what’s working, and what’s not. Then run two deep research queries: one on your specific company, one on AI’s impact on your narrow industry. Then brainstorm how to use AI to transform your business (have AI record and transcribe this too! Otter is easy, but there are others). THEN take both deep research outputs and single-person transcriptions, load it as context. Then prompt the AI to brainstorm potential AI ideas, giving the third transcript as an example. In your prompt… Ask for 200 ideas. Ask AI to score and rank the ideas on criteria you care about (potential revenue? Speed to deploy? People required?). Make sure the top 5 are wide in their support (ie not just 5 ideas to improve calendar management). Ask AI to give a mini execution plan for the top 5. Ask for what you might be missing. Ask for ways to make the ideas 5x better. Ask for revolutionary ways to execute the 5 so that they score higher on your criteria. Try and be in person if possible. It's extra magic. We are seeing cutbacks from cost pressures, uncertain economic conditions, and the hope of AI. I am not (yet?) a proponent for 4-day work weeks, but I am a big proponent of smaller teams. This is one way to get ahead. ♻️ Save and share this post with others who could use an AI edge.

  • View profile for Brij kishore Pandey
    Brij kishore Pandey Brij kishore Pandey is an Influencer

    AI Architect | Strategist | Generative AI | Agentic AI

    689,990 followers

    The initial gold rush of building AI applications is rapidly maturing into a structured engineering discipline. While early prototypes could be built with a simple API wrapper, production-grade AI requires a sophisticated, resilient, and scalable architecture. Here is an analysis of the core components: 𝟭. 𝗧𝗵𝗲 𝗡𝗲𝘄 "𝗜𝗻𝘁𝗲𝗹𝗹𝗶𝗴𝗲𝗻𝗰𝗲 𝗖𝗼𝗿𝗲": The Brain, Nervous System, and Memory At the heart of this stack lies a trinity of components that differentiate AI applications from traditional software:  • Model Layer (The Brain): This is the engine of reasoning and generation (OpenAI, Llama, Claude). The choice here dictates the application's core capabilities, cost, and performance.  • Orchestration & Agents (The Nervous System): Frameworks like LangChain, CrewAI, and Semantic Kernel are not just "glue code." They are the operational logic layer that translates user intent into complex, multi-step workflows, tool usage, and function calls. This is where you bestow agency upon the LLM.  • Vector Databases (The Memory): Serving as the AI's long-term memory, vector databases (Pinecone, Weaviate, Chroma) are critical for implementing effective Retrieval-Augmented Generation (RAG). They enable the model to access and reason over proprietary, real-time data, mitigating hallucinations and providing contextually rich responses. 𝟮. 𝗘𝗻𝘁𝗲𝗿𝗽𝗿𝗶𝘀𝗲-𝗚𝗿𝗮𝗱𝗲 𝗦𝗰𝗮𝗳𝗳𝗼𝗹𝗱𝗶𝗻𝗴: Scalability and Reliability The intelligence core cannot operate in a vacuum. It is supported by established software engineering best practices that ensure the application is robust, scalable, and user-friendly:  • Frontend & Backend: These familiar layers (React, FastAPI, Spring Boot) remain the backbone of user interaction and business logic. The key challenge is designing seamless UIs for non-deterministic outputs and architecting backends that can handle asynchronous, long-running agent tasks.  • Cloud & CI/CD: The principles of DevOps are more critical than ever. Infrastructure-as-Code (Terraform), containerization (Kubernetes), and automated pipelines (GitHub Actions) are essential for managing the complexity of these multi-component systems and ensuring reproducible deployments. 𝟯. 𝗧𝗵𝗲 𝗟𝗮𝘀𝘁 𝗠𝗶𝗹𝗲: Governance, Safety, and Data Integrity. The most mature AI teams are now focusing heavily on this operational frontier:  • Monitoring & Guardrails: In a world of non-deterministic models, you cannot simply monitor for HTTP 500 errors. Tools like Guardrails AI, Trulens, and Llamaguard are emerging to evaluate output quality, prevent prompt injections, enforce brand safety, and control runaway operational costs.  • Data Infrastructure: The performance of any RAG system is contingent on the quality of the data it retrieves. Robust data pipelines (Airflow, Spark, Prefect) are crucial for ingesting, cleaning, chunking, and embedding massive volumes of unstructured data into the vector databases that feed the models.

  • View profile for Yamini Rangan
    Yamini Rangan Yamini Rangan is an Influencer
    153,398 followers

    How can leaders transform their teams to be AI-first? It starts with mindset. An AI-first mindset means: Seeing AI as an opportunity, not a threat. Viewing AI as a tool to augment teams, not just automate tasks. Using AI to reimagine work, not just optimize work. As leaders, it’s on us to build this mindset within our teams. Here are 5 ways we do this at HubSpot: Use AI daily: Lead by example—trust grows when teams see leaders embrace AI themselves. I use it everyday and share very specific use cases with our company on how I use it. Now every leader is doing the same with their teams. The result is that we will have almost everyone in the company use AI daily by the end of year. Apply constraints: Give clear, focused challenges. We kept headcount flat in Support while growing the customer base by 20%+. Result - the team innovated with AI and over achieved the target. Smart constraints drive innovation. Establish tiger teams: Empower small, agile groups to experiment, innovate, and teach the organization. We have AI Tiger teams in every function - they share progress in Slack channels and there is so much energy with small groups experimenting and learning. Be a learn-it-all: Foster a culture of continuous learning. Share openly about successes and failures alike. We have dedicated 2 full days to learning and scaling with AI this quarter as a company - we have lined up great speakers, ways to experiment and gamified learning. Measure progress and share it: Measure which teams are completing learning modules, using AI everyday and share that openly. A little healthy competition goes a long way in driving AI-fluency. AI isn’t just a technology shift. It’s fundamentally reshaping how work gets done—and that requires shifting our mindset first. Leaders who embrace AI now will unlock creativity, performance, and impact. Are you building an AI-first mindset with your team? #Leadership #AI #Innovation #Mindset #FutureOfWork

  • View profile for David Linthicum

    Top 10 Global Cloud & AI Influencer | Enterprise Tech Innovator | Strategic Board & Advisory Member | Trusted Technology Strategy Advisor | 5x Bestselling Author, Educator & Speaker

    190,540 followers

    Big consulting firms rushing to AI...do better. In the rapidly evolving world of AI, far too many enterprises are trusting the advice of large consulting firms, only to find themselves lagging behind or failing outright. As someone who has worked closely with organizations navigating the AI landscape, I see these pitfalls repeatedly—and they’re well documented by recent research. Here is the data: 1. High Failure Rates From Consultant-Led AI Initiatives A combination of Gartner and Boston Consulting Group (BCG) data demonstrates that over 70% of AI projects underperform or fail. The finger often points to poor-fit recommendations from consulting giants who may not understand the client’s unique context, pushing generic strategies that don’t translate into real business value. 2. One-Size-Fits-All Solutions Limit True Value Boston Consulting Group (BCG) found that 74% of companies using large consulting firms for AI encounter trouble when trying to scale beyond the pilot phase. These struggles are often linked to consulting approaches that rely on industry “best practices” or templated frameworks, rather than deeply integrating into an enterprise’s specific workflows and data realities. 3. Lost ROI and Siloed Progress Research from BCG shows that organizations leaning too heavily on consultant-driven AI roadmaps are less likely to see genuine returns on their investment. Many never move beyond flashy proof-of-concepts to meaningful, organization-wide transformation. 4. Inadequate Focus on Data Integration and Governance Surveys like Deloitte’s State of AI consistently highlight data integration and governance as major stumbling blocks. Despite sizable investments and consulting-led efforts, enterprises frequently face the same roadblocks because critical foundational work gets overshadowed by a rush to achieve headline results. 5. The Minority Enjoy the Major Gains MIT Sloan School of Management reported that just 10% of heavy AI spenders actually achieve significant business benefits—and most of these are not blindly following external advisors. Instead, their success stems from strong internal expertise and a tailored approach that fits their specific challenges and goals.

  • View profile for Shyvee Shi

    Product @ Microsoft | ex-LinkedIn

    122,809 followers

    Most companies say they want to “get better at AI.” But what does that actually mean? For anyone trying to move beyond vague ambitions to real, measurable progress— this AI Maturity Model from Hustle Badger and Susannah Belcher is worth bookmarking. It’s more than a framework. It’s a roadmap to becoming an AI-ready organization across strategy, culture, tools, and trust. Here’s how it works: Step 1️⃣ : Diagnose your starting point Rate your organization across 6 categories—like data readiness, governance, and leadership mindset—from Level 1 (Limited) to Level 5 (Best-in-class). Step 2️⃣: Visualize your maturity scorecard Get a snapshot of strengths, gaps, and hidden risk factors (like weak AI governance or untrained teams). Step 3️⃣: Align on what matters This isn’t about maxing every score. It’s about identifying which dimensions actually move the needle for your business and customers. Step 4️⃣: Build your AI development canvas Assign clear owners, define target maturity levels, and create specific actions and timelines to get there. Step 5️⃣: Repeat and evolve Because AI isn’t static—your maturity model shouldn’t be either. 🧠 What I loved most:  This framework creates shared language and accountability around AI. It’s not just a tech team thing—it touches leadership, hiring, operations, and product delivery. Whether you’re early in the journey or already shipping AI-powered products, this model offers a smart way to: ▸ Run internal audits ▸ Create realistic roadmaps ▸ And scale AI capability without chaos 🔗 Worth a read if you're building AI into your org's future: https://lnkd.in/ejVSwmAW 👉 Curious—has your company done an AI maturity assessment yet? What category do you think most teams are underestimating? #AI #ProductBuiding #OrgMaturity

  • View profile for Matt Wood
    Matt Wood Matt Wood is an Influencer

    CTIO, PwC

    75,343 followers

    AI field note: Reducing the 'mean time to ah-ha' (MTtAh) is critical for driving AI adoption—and unlocking the value. When it comes to AI adoption, there's a crucial milestone: the "ah-ha moment." It's that instant of realization when someone stops seeing AI as just a smarter search tool and starts recognizing it as a reasoning and integration engine—a fundamentally new way of solving problems, driving innovation, and collaborating with technology. For me, that moment came when I saw an AI system not just write code but also deploy it, identify errors, and fix them automatically. In that instant, I realized AI wasn’t just about automation or insights—it was about partnership. A dynamic, reasoning collaborator capable of understanding, iterating, and executing alongside us. But these "ah-ha moments" don’t happen by accident. Systems like ChatGPT or Claude excel at enabling breakthroughs, but it really requires us to ask the right questions. That creates a chicken-and-egg problem: until users see what’s possible, they struggle to imagine what else is possible. So how do we help people get hands-on with AI, especially in enterprise organizations, without relying on traditional training? Here are some approaches we have tried at PwC: 🤖 AI "Hackathons" or Challenges: Host short, low-stakes events where employees can experiment with AI on real problems. For example, marketing teams could test AI for campaign ideas, while operations teams explore process automation. ⚙️ Sandbox Environments: Provide low-friction, risk-aware access to AI tools within a dedicated environment. Let users explore capabilities like text generation, workflow automation, or analytics without worrying about “messing something up.” 🚀 Pre-built Use Cases: Offer ready-to-use templates for specific challenges, such as drafting a client email, summarizing documents, or automating routine reports. Seeing results in action builds confidence and sparks creativity. At PwC we have a community prompt library available to everyone, making it easier to get started. 🧩 Embedded AI Mentors: Assign "AI champions" who can guide teams on applying AI in their work. This informal mentorship encourages experimentation without formal, structured training. We do this at PwC and it's been huge. ⚡️ Integrate AI into Existing Tools: Embed AI into everyday platforms (like email, collaboration tools, or CRM systems) so users can naturally interact with it during routine workflows. Familiarity leads to discovery. Reducing the mean time to ah-ha—the time it takes someone to have that transformative realization—is critical. While starting with familiar use cases lowers the barrier to entry, the real shift happens when users experience AI’s deeper capabilities firsthand.

  • View profile for Anthony Kennada
    Anthony Kennada Anthony Kennada is an Influencer

    Helping B2B Founders & CMOs Unlock Brand Humanity® | Built Gainsight into a $1B+ Brand | Author of Category Creation | 3x Cloud 100 CMO

    33,420 followers

    Nobody is telling the truth about how disruptive this is going to be. Maybe since I’m ‘unaffiliated’ for now, I can. 👀 AI isn’t just coming for workflows. It’s coming for the foundations of knowledge work — and for the identities built on it. For CMOs and marketing leaders, this hits hard. For years, we’ve found meaning in our playbooks and how we execute. Now, much of that is being automated, flattened, or redefined in real time. And here’s the part we’re not talking about enough: This isn’t just a professional disruption. It’s a personal one. To survive it — let alone lead through it and flourish — we can’t keep pushing at the same velocity, hoping to outrun the change. We need to slow down. Reground. Rebuild. That means investing differently: Mind – Slowing down to build emotional resilience in a time of accelerated everything. Learning to lead from clarity, not reaction. Body – Remembering we’re not brains on a stick. Stewarding our embodied experience through sleep, movement, and nourishment — so we can actually sustain the work. Soul – Recognizing that our sense of identity is often wrapped up in our work — and that AI will inevitably challenge how we define purpose and value. This season demands we examine those foundations, and do so in community, not isolation. This is the real work of leadership in the Intelligence Age. Not just learning to prompt better. But learning to stay human — when everything else is speeding up.

  • View profile for Muqsit Ashraf

    Group Chief Executive - Strategy | Co-Chief Executive Strategy and Consulting | Accenture Global Management Committee

    17,478 followers

    In this latest Forbes article, I draw a compelling line from Ada Lovelace’s 19th-century foresight to today’s AI-driven enterprise transformations. Lovelace envisioned machines augmenting human creativity—a vision now realized as #generativeAI reshapes industries. Accenture's experience with over 2,000 gen AI projects reveals that only 13% of companies achieve significant enterprise-wide value, while 36% are scaling AI for industry-specific solutions. Success in this new era hinges on more than just technology investment. Companies must also invest in their people, prioritize industry-specific AI applications, and embed responsible AI practices from the outset. Organizations adopting agentic architecture - digital teams comprising orchestrator, super, and utility agents—are 4.5 times more likely to realize enterprise-level value. Here are five key lessons we’ve learned: 1. Lead with value from the top: Executive sponsorship is crucial. Companies with CEO sponsorship achieve 2.5 times higher ROI from their #AI investments.  2. Invest in people, not just technology: Empower your workforce with the skills to harness AI. Organizations excelling in AI transformation invest in broad AI upskilling, adopt dynamic workforce models, and enable human + agent collaboration.  3. Prioritize industry-specific AI solutions: Tailor AI applications to your sector’s unique needs. Companies creating enterprise-level value are 2.9 times more likely to have a comprehensive data strategy to support their AI efforts.  4. Design and embed AI responsibly from the start: Ensure ethical and effective AI integration. Organizations creating enterprise-level value are 2.7 times more likely to have responsible AI principles and governance in place across the AI lifecycle.  5. Reinvent continuously: Stay adaptable in the face of ongoing change. Companies with advanced change capabilities are 2.1 times more likely to achieve successful transformations. These lessons should serve as a practical playbook for navigating the complexities of #AI integration and achieving sustainable growth. Please read the full article to explore how Lovelace’s visionary ideas are shaping the future of business through #generativeAI. https://lnkd.in/gEVzQeRA

Explore categories