Ethical Considerations In Predictive Analytics With AI

Explore top LinkedIn content from expert professionals.

Summary

Ethical considerations in predictive analytics with AI involve addressing fairness, accountability, transparency, and bias to ensure responsible and just decision-making. As AI systems increasingly influence crucial decisions in areas like healthcare, employment, and justice, organizations must prioritize ethics throughout the AI lifecycle.

  • Engage diverse stakeholders: Collaborate with affected communities, users, and industry experts to identify risks and ensure AI systems address real-world needs while minimizing unintended harm.
  • Ensure transparency: Design AI systems to explain how decisions are made in a way that non-technical users can understand, building trust and enabling accountability.
  • Focus on fairness: Implement fairness metrics and review processes to identify biases in data and algorithms, ensuring outcomes are equitable and do not reinforce societal inequalities.
Summarized by AI based on LinkedIn member posts
  • View profile for Katharina Koerner

    AI Governance & Security I Trace3 : All Possibilities Live in Technology: Innovating with risk-managed AI: Strategies to Advance Business Goals through AI Governance, Privacy & Security

    44,343 followers

    The guide "AI Fairness in Practice" by The Alan Turing Institute from 2023 covers the concept of fairness in AI/ML contexts. The fairness paper is part of the AI Ethics and Governance in Practice Program (link: https://lnkd.in/gvYRma_R). The paper dives deep into various types of fairness: DATA FAIRNESS includes: - representativeness of data samples, - collaboration for fit-for-purpose and sufficient data quantity, - maintaining source integrity and measurement accuracy, - scrutinizing timeliness, and - relevance, appropriateness, and domain knowledge in data selection and utilization. APPLICATION FAIRNESS involves considering equity at various stages of AI project development, including examining real-world contexts, addressing equity issues in targeted groups, and recognizing how AI model outputs may shape decision outcomes. MODEL DESIGN AND DEVELOPMENT FAIRNESS involves ensuring fairness at all stages of the AI project workflow by - scrutinizing potential biases in outcome variables and proxies during problem formulation, - conducting fairness-aware design in preprocessing and feature engineering, - paying attention to interpretability and performance across demographic groups in model selection and training, - addressing fairness concerns in model testing and validation, - implementing procedural fairness for consistent application of rules and procedures. METRIC-BASED FAIRNESS utilizes mathematical mechanisms to ensure fair distribution of outcomes and error rates among demographic groups, including: - Demographic/Statistical Parity: Equal benefits among groups. - Equalized Odds: Equal error rates across groups. - True Positive Rate Parity: Equal accuracy between population subgroups. - Positive Predictive Value Parity: Equal precision rates across groups. - Individual Fairness: Similar treatment for similar individuals. - Counterfactual Fairness: Consistency in decisions. The paper further covers SYSTEM IMPLEMENTATION FAIRNESS, incl. Decision-Automation Bias (Overreliance and Overcompliance), Automation-Distrust Bias, contextual considerations for impacted individuals, and ECOSYSTEM FAIRNESS. -- Appendix A (p 75) lists Algorithmic Fairness Techniques throughout the AI/ML Lifecycle, e.g.: - Preprocessing and Feature Engineering: Balancing dataset distributions across groups. - Model Selection and Training: Penalizing information shared between attributes and predictions. - Model Testing and Validation: Enforcing matching false positive/negative rates. - System Implementation: Allowing accuracy-fairness trade-offs. - Post-Implementation Monitoring: Preventing model reliance on sensitive attributes. -- The paper also includes templates for Bias Self-Assessment, Bias Risk Management, and a Fairness Position Statement. -- Link to authors/paper: https://lnkd.in/gczppH29 #AI #Bias #AIfairness

  • View profile for Patrick Sullivan

    VP of Strategy and Innovation at A-LIGN | TEDx Speaker | Forbes Technology Council | AI Ethicist | ISO/IEC JTC1/SC42 Member

    10,202 followers

    ✳ Bridging Ethics and Operations in AI Systems✳ Governance for AI systems needs to balance operational goals with ethical considerations. #ISO5339 and #ISO24368 provide practical tools for embedding ethics into the development and management of AI systems. ➡Connecting ISO5339 to Ethical Operations  ISO5339 offers detailed guidance for integrating ethical principles into AI workflows. It focuses on creating systems that are responsive to the people and communities they affect. 1. Engaging Stakeholders  Stakeholders impacted by AI systems often bring perspectives that developers may overlook. ISO5339 emphasizes working with users, affected communities, and industry partners to uncover potential risks and ensure systems are designed with real-world impact in mind. 2. Ensuring Transparency  AI systems must be explainable to maintain trust. ISO5339 recommends designing systems that can communicate how decisions are made in a way that non-technical users can understand. This is especially critical in areas where decisions directly affect lives, such as healthcare or hiring. 3. Evaluating Bias  Bias in AI systems often arises from incomplete data or unintended algorithmic behaviors. ISO5339 supports ongoing evaluations to identify and address these issues during development and deployment, reducing the likelihood of harm. ➡Expanding on Ethics with ISO24368  ISO24368 provides a broader view of the societal and ethical challenges of AI, offering additional guidance for long-term accountability and fairness. ✅Fairness: AI systems can unintentionally reinforce existing inequalities. ISO24368 emphasizes assessing decisions to prevent discriminatory impacts and to align outcomes with social expectations.  ✅Transparency: Systems that operate without clarity risk losing user trust. ISO24368 highlights the importance of creating processes where decision-making paths are fully traceable and understandable.  ✅Human Accountability: Decisions made by AI should remain subject to human review. ISO24368 stresses the need for mechanisms that allow organizations to take responsibility for outcomes and override decisions when necessary. ➡Applying These Standards in Practice  Ethical considerations cannot be separated from operational processes. ISO24368 encourages organizations to incorporate ethical reviews and risk assessments at each stage of the AI lifecycle. ISO5339 focuses on embedding these principles during system design, ensuring that ethics is part of both the foundation and the long-term management of AI systems. ➡Lessons from #EthicalMachines  In "Ethical Machines", Reid Blackman, Ph.D. highlights the importance of making ethics practical. He argues for actionable frameworks that ensure AI systems are designed to meet societal expectations and business goals. Blackman’s focus on stakeholder input, decision transparency, and accountability closely aligns with the goals of ISO5339 and ISO24368, providing a clear way forward for organizations.

  • View profile for Siddharth Rao

    Global CIO | Board Member | Digital Transformation & AI Strategist | Scaling $1B+ Enterprise & Healthcare Tech | C-Suite Award Winner & Speaker

    10,612 followers

    𝗧𝗵𝗲 𝗘𝘁𝗵𝗶𝗰𝗮𝗹 𝗜𝗺𝗽𝗹𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝗼𝗳 𝗘𝗻𝘁𝗲𝗿𝗽𝗿𝗶𝘀𝗲 𝗔𝗜: 𝗪𝗵𝗮𝘁 𝗘𝘃𝗲𝗿𝘆 𝗕𝗼𝗮𝗿𝗱 𝗦𝗵𝗼𝘂𝗹𝗱 𝗖𝗼𝗻𝘀𝗶𝗱𝗲𝗿 "𝘞𝘦 𝘯𝘦𝘦𝘥 𝘵𝘰 𝘱𝘢𝘶𝘴𝘦 𝘵𝘩𝘪𝘴 𝘥𝘦𝘱𝘭𝘰𝘺𝘮𝘦𝘯𝘵 𝘪𝘮𝘮𝘦𝘥𝘪𝘢𝘵𝘦𝘭𝘺." Our ethics review identified a potentially disastrous blind spot 48 hours before a major AI launch. The system had been developed with technical excellence but without addressing critical ethical dimensions that created material business risk. After a decade guiding AI implementations and serving on technology oversight committees, I've observed that ethical considerations remain the most systematically underestimated dimension of enterprise AI strategy — and increasingly, the most consequential from a governance perspective. 𝗧𝗵𝗲 𝗚𝗼𝘃𝗲𝗿𝗻𝗮𝗻𝗰𝗲 𝗜𝗺𝗽𝗲𝗿𝗮𝘁𝗶𝘃𝗲 Boards traditionally approach technology oversight through risk and compliance frameworks. But AI ethics transcends these models, creating unprecedented governance challenges at the intersection of business strategy, societal impact, and competitive advantage. 𝗔𝗹𝗴𝗼𝗿𝗶𝘁𝗵𝗺𝗶𝗰 𝗔𝗰𝗰𝗼𝘂𝗻𝘁𝗮𝗯𝗶𝗹𝗶𝘁𝘆: Beyond explainability, boards must ensure mechanisms exist to identify and address bias, establish appropriate human oversight, and maintain meaningful control over algorithmic decision systems. One healthcare organization established a quarterly "algorithmic audit" reviewed by the board's technology committee, revealing critical intervention points preventing regulatory exposure. 𝗗𝗮𝘁𝗮 𝗦𝗼𝘃𝗲𝗿𝗲𝗶𝗴𝗻𝘁𝘆: As AI systems become more complex, data governance becomes inseparable from ethical governance. Leading boards establish clear principles around data provenance, consent frameworks, and value distribution that go beyond compliance to create a sustainable competitive advantage. 𝗦𝘁𝗮𝗸𝗲𝗵𝗼𝗹𝗱𝗲𝗿 𝗜𝗺𝗽𝗮𝗰𝘁 𝗠𝗼𝗱𝗲𝗹𝗶𝗻𝗴: Sophisticated boards require systematically analyzing how AI systems affect all stakeholders—employees, customers, communities, and shareholders. This holistic view prevents costly blind spots and creates opportunities for market differentiation. 𝗧𝗵𝗲 𝗦𝘁𝗿𝗮𝘁𝗲𝗴𝘆-𝗘𝘁𝗵𝗶𝗰𝘀 𝗖𝗼𝗻𝘃𝗲𝗿𝗴𝗲𝗻𝗰𝗲 Organizations that treat ethics as separate from strategy inevitably underperform. When one financial services firm integrated ethical considerations directly into its AI development process, it not only mitigated risks but discovered entirely new market opportunities its competitors missed. 𝘋𝘪𝘴𝘤𝘭𝘢𝘪𝘮𝘦𝘳: 𝘛𝘩𝘦 𝘷𝘪𝘦𝘸𝘴 𝘦𝘹𝘱𝘳𝘦𝘴𝘴𝘦𝘥 𝘢𝘳𝘦 𝘮𝘺 𝘱𝘦𝘳𝘴𝘰𝘯𝘢𝘭 𝘪𝘯𝘴𝘪𝘨𝘩𝘵𝘴 𝘢𝘯𝘥 𝘥𝘰𝘯'𝘵 𝘳𝘦𝘱𝘳𝘦𝘴𝘦𝘯𝘵 𝘵𝘩𝘰𝘴𝘦 𝘰𝘧 𝘮𝘺 𝘤𝘶𝘳𝘳𝘦𝘯𝘵 𝘰𝘳 𝘱𝘢𝘴𝘵 𝘦𝘮𝘱𝘭𝘰𝘺𝘦𝘳𝘴 𝘰𝘳 𝘳𝘦𝘭𝘢𝘵𝘦𝘥 𝘦𝘯𝘵𝘪𝘵𝘪𝘦𝘴. 𝘌𝘹𝘢𝘮𝘱𝘭𝘦𝘴 𝘥𝘳𝘢𝘸𝘯 𝘧𝘳𝘰𝘮 𝘮𝘺 𝘦𝘹𝘱𝘦𝘳𝘪𝘦𝘯𝘤𝘦 𝘩𝘢𝘷𝘦 𝘣𝘦𝘦𝘯 𝘢𝘯𝘰𝘯𝘺𝘮𝘪𝘻𝘦𝘥 𝘢𝘯𝘥 𝘨𝘦𝘯𝘦𝘳𝘢𝘭𝘪𝘻𝘦𝘥 𝘵𝘰 𝘱𝘳𝘰𝘵𝘦𝘤𝘵 𝘤𝘰𝘯𝘧𝘪𝘥𝘦𝘯𝘵𝘪𝘢𝘭 𝘪𝘯𝘧𝘰𝘳𝘮𝘢𝘵𝘪𝘰𝘯.

  • View profile for Brandeis Marshall, PhD, EMBA

    I help cross-functional teams execute their responsible AI and data strategies so they can create people-centered tech solutions | Leading DataedX Group™ + Black Women in Data

    11,788 followers

    If you’re teaching about AI without talking about algorithmic justice, you’re not preparing your students for the real world. Chapter 1 of Mitigating Bias in Machine Learning, written by Nina da Hora & Silvandro Pedrozo, MSc, goes deeper than the surface level ethics conversation, by offering a usable foundation for educators and developers alike. Inside the authors offer strategies to build machine learning models that don’t just “perform,” but perform responsibly. This Chapter Covers: • Why tech neutrality is a myth that needs to go • What algorithmic fairness actually means (and why definitions vary) • Where injustice creeps into the ML pipeline — from data collection to deployment • How to use fairness metrics and mitigation methods to shift models from harm to help This for the instructor who’s tired of outdated syllabi, or anyone teaching AI who’s been quietly wondering: "Am I covering this in a way that actually matters?" Upon completion of this chapter, the student should be able to • Understand different definitions of algorithmic fairness • Understand the importance of ethics in artificial intelligence • Learn about the main causes of injustice in machine learning • Learn the different sources of harm in a machine learning life cycle If you're building curriculum — or just curious what responsible ML teaching actually looks like — Mitigating Bias in Machine Learning is a great place to start. I'll leave the 🔗 to the book in comments. Drop your questions/syllabus updates below, I'd love to hear how the book is landing with you and your students. #ResponsibleAI #MachineLearning

Explore categories