The Cyber Security Agency of Singapore (CSA) has published “Guidelines on Securing AI Systems,” to help system owners manage security risks in the use of AI throughout the five stages of the AI lifecycle. 1. Planning and Design: - Raise awareness and competency on security by providing training and guidance on the security risks of #AI to all personnel, including developers, system owners and senior leaders. - Conduct a #riskassessment and supplement it by continuous monitoring and a strong feedback loop. 2. Development: - Secure the #supplychain (training data, models, APIs, software libraries) - Ensure that suppliers appropriately manage risks by adhering to #security policies or internationally recognized standards. - Consider security benefits and trade-offs such as complexity, explainability, interpretability, and sensitivity of training data when selecting the appropriate model to use (#machinelearning, deep learning, #GenAI). - Identify, track and protect AI-related assets, including models, #data, prompts, logs and assessments. - Secure the #artificialintelligence development environment by applying standard infrastructure security principles like #accesscontrols and logging/monitoring, segregation of environments, and secure-by-default configurations. 3. Deployment: - Establish #incidentresponse, escalation and remediation plans. - Release #AIsystems only after subjecting them to appropriate and effective security checks and evaluation. 4. Operations and Maintenance: - Monitor and log inputs (queries, prompts and requests) and outputs to ensure they are performing as intended. - Adopt a secure-by-design approach to updates and continuous learning. - Establish a vulnerability disclosure process for users to share potential #vulnerabilities to the system. 5. End of Life: - Ensure proper data and model disposal according to relevant industry standards or #regulations.
How to Safeguard Open AI Innovation
Explore top LinkedIn content from expert professionals.
Summary
Safeguarding open AI innovation involves implementing robust security measures and ethical standards to protect AI systems, data, and intellectual property while promoting responsible use and development. This ensures the longevity and trustworthiness of AI technologies in diverse applications.
- Secure AI systems end-to-end: Protect data during sourcing, storage, and transit by implementing access controls, encryption, and secure development environments throughout the AI lifecycle.
- Develop incident response strategies: Establish protocols for managing data breaches, AI model vulnerabilities, and security incidents to minimize risks and maintain operations.
- Continuously monitor and adapt: Regularly assess vulnerabilities, update systems, and enforce compliance to address evolving threats and ensure the integrity of AI innovation.
-
-
AI is not failing because of bad ideas; it’s "failing" at enterprise scale because of two big gaps: 👉 Workforce Preparation 👉 Data Security for AI While I speak globally on both topics in depth, today I want to educate us on what it takes to secure data for AI—because 70–82% of AI projects pause or get cancelled at POC/MVP stage (source: #Gartner, #MIT). Why? One of the biggest reasons is a lack of readiness at the data layer. So let’s make it simple - there are 7 phases to securing data for AI—and each phase has direct business risk if ignored. 🔹 Phase 1: Data Sourcing Security - Validating the origin, ownership, and licensing rights of all ingested data. Why It Matters: You can’t build scalable AI with data you don’t own or can’t trace. 🔹 Phase 2: Data Infrastructure Security - Ensuring data warehouses, lakes, and pipelines that support your AI models are hardened and access-controlled. Why It Matters: Unsecured data environments are easy targets for bad actors making you exposed to data breaches, IP theft, and model poisoning. 🔹 Phase 3: Data In-Transit Security - Protecting data as it moves across internal or external systems, especially between cloud, APIs, and vendors. Why It Matters: Intercepted training data = compromised models. Think of it as shipping cash across town in an armored truck—or on a bicycle—your choice. 🔹 Phase 4: API Security for Foundational Models - Safeguarding the APIs you use to connect with LLMs and third-party GenAI platforms (OpenAI, Anthropic, etc.). Why It Matters: Unmonitored API calls can leak sensitive data into public models or expose internal IP. This isn’t just tech debt. It’s reputational and regulatory risk. 🔹 Phase 5: Foundational Model Protection - Defending your proprietary models and fine-tunes from external inference, theft, or malicious querying. Why It Matters: Prompt injection attacks are real. And your enterprise-trained model? It’s a business asset. You lock your office at night—do the same with your models. 🔹 Phase 6: Incident Response for AI Data Breaches - Having predefined protocols for breaches, hallucinations, or AI-generated harm—who’s notified, who investigates, how damage is mitigated. Why It Matters: AI-related incidents are happening. Legal needs response plans. Cyber needs escalation tiers. 🔹 Phase 7: CI/CD for Models (with Security Hooks) - Continuous integration and delivery pipelines for models, embedded with testing, governance, and version-control protocols. Why It Matter: Shipping models like software means risk comes faster—and so must detection. Governance must be baked into every deployment sprint. Want your AI strategy to succeed past MVP? Focus and lock down the data. #AI #DataSecurity #AILeadership #Cybersecurity #FutureOfWork #ResponsibleAI #SolRashidi #Data #Leadership
-
Yesterday, the National Security Agency Artificial Intelligence Security Center published the joint Cybersecurity Information Sheet Deploying AI Systems Securely in collaboration with the Cybersecurity and Infrastructure Security Agency, the Federal Bureau of Investigation (FBI), the Australian Signals Directorate’s Australian Cyber Security Centre, the Canadian Centre for Cyber Security, the New Zealand National Cyber Security Centre, and the United Kingdom’s National Cyber Security Centre. Deploying AI securely demands a strategy that tackles AI-specific and traditional IT vulnerabilities, especially in high-risk environments like on-premises or private clouds. Authored by international security experts, the guidelines stress the need for ongoing updates and tailored mitigation strategies to meet unique organizational needs. 🔒 Secure Deployment Environment: * Establish robust IT infrastructure. * Align governance with organizational standards. * Use threat models to enhance security. 🏗️ Robust Architecture: * Protect AI-IT interfaces. * Guard against data poisoning. * Implement Zero Trust architectures. 🔧 Hardened Configurations: * Apply sandboxing and secure settings. * Regularly update hardware and software. 🛡️ Network Protection: * Anticipate breaches; focus on detection and quick response. * Use advanced cybersecurity solutions. 🔍 AI System Protection: * Regularly validate and test AI models. * Encrypt and control access to AI data. 👮 Operation and Maintenance: * Enforce strict access controls. * Continuously educate users and monitor systems. 🔄 Updates and Testing: * Conduct security audits and penetration tests. * Regularly update systems to address new threats. 🚨 Emergency Preparedness: * Develop disaster recovery plans and immutable backups. 🔐 API Security: * Secure exposed APIs with strong authentication and encryption. This framework helps reduce risks and protect sensitive data, ensuring the success and security of AI systems in a dynamic digital ecosystem. #cybersecurity #CISO #leadership
-
Recent studies highlight growing anxiety among business leaders regarding the security risks of generative AI adoption. According to the First Annual Generative AI Study: Business Rewards vs. Security Risks, 80% of executives cited the leakage of sensitive data as their top concern. Additionally, a Gartner Peer Community Poll found that 77% of organizations are somewhat concerned about indirect prompt injection attacks, with 11% extremely concerned. These findings reveal a pressing need for organizations to balance innovation with robust security strategies, particularly as AI becomes more deeply integrated into business operations. To get started addressing these concerns, you should prioritize: ✅ Implement AI Security Posture Management (AI-SPM) – this is essential for continuously monitoring AI systems, identifying vulnerabilities such as prompt injection risks, and ensuring compliance with evolving security standards. ✅ Apply data loss prevention (DLP) controls to safeguard sensitive information from accidental or malicious leakage, especially during AI model interactions. Picture from my presentation at Techorama last month in Belgium, thanks Christina Wheeler for capturing this moment. See how Defender for Cloud can help you through this journey: #AISecurity #SecurityPosture #ctem #cspm #aispm #microsoft #defenderforcloud