Building trust in automated valuation models

Explore top LinkedIn content from expert professionals.

Summary

Building trust in automated valuation models means making sure these AI-driven tools, which estimate things like property values or credit risk, are transparent and understandable to users, regulators, and stakeholders. By providing clear explanations for how these models arrive at decisions, businesses increase confidence in their automated systems and support adoption in critical sectors like finance and real estate.

  • Prioritize transparency: Use tools and methods that reveal how automated valuation models make their decisions, helping everyone understand the reasoning behind outcomes.
  • Implement oversight: Make sure there is human supervision for high-impact decisions and set clear guidelines for when AI can operate independently or requires review.
  • Invest in explainability: Choose technologies and practices that offer detailed explanations for AI decisions, making it easier to spot errors, biases, and build long-term trust.
Summarized by AI based on LinkedIn member posts
  • View profile for Jayeeta Putatunda

    Director - AI CoE @ Fitch Ratings | NVIDIA NEPA Advisor | HearstLab VC Scout | Global Keynote Speaker & Mentor | AI100 Awardee | Women in AI NY State Ambassador | ASFAI

    9,101 followers

    𝗧𝗵𝗲 "𝗕𝗹𝗮𝗰𝗸 𝗕𝗼𝘅" 𝗘𝗿𝗮 𝗼𝗳 𝗟𝗟𝗠𝘀 𝗻𝗲𝗲𝗱𝘀 𝘁𝗼 𝗲𝗻𝗱! Especially in high-stakes industries like 𝗙𝗶𝗻𝗮𝗻𝗰𝗲, this is one step in the right direction. Anthropic just open-sourced their powerful circuit-tracing tools. This explainability framework doesn't just provide post-hoc explanations, it reveals the actual c𝗰𝗼𝗺𝗽𝘂𝘁𝗮𝘁𝗶𝗼𝗻𝗮𝗹 𝗽𝗮𝘁𝗵𝘄𝗮𝘆𝘀 𝗺𝗼𝗱𝗲𝗹𝘀 𝘂𝘀𝗲 𝗱𝘂𝗿𝗶𝗻𝗴 𝗶𝗻𝗳𝗲𝗿𝗲𝗻𝗰𝗲. This is also accessible through an interactive interface at Neuronpedia. 𝗪𝗵𝗮𝘁 𝘁𝗵𝗶𝘀 𝗺𝗲𝗮𝗻𝘀 𝗳𝗼𝗿 𝗳𝗶𝗻𝗮𝗻𝗰𝗶𝗮𝗹 𝘀𝗲𝗿𝘃𝗶𝗰𝗲𝘀: ▪️𝗔𝘂𝗱𝗶𝘁 𝗧𝗿𝗮𝗰𝗲𝗮𝗯𝗶𝗹𝗶𝘁𝘆: For the first time, we can generate attribution graphs that reveal the step-by-step reasoning process inside AI models. Imagine showing regulators exactly how your credit scoring model arrived at a decision, or why your fraud detection system flagged a transaction. ▪️𝗥𝗲𝗴𝘂𝗹𝗮𝘁𝗼𝗿𝘆 𝗖𝗼𝗺𝗽𝗹𝗶𝗮𝗻𝗰𝗲 𝗠𝗮𝗱𝗲 𝗘𝗮𝘀𝗶𝗲𝗿: The struggle with AI governance due to model opacity is real. These tools offer a pathway to meet "right to explanation" requirements with actual technical substance, not just documentation. ▪️𝗥𝗶𝘀𝗸 𝗠𝗮𝗻𝗮𝗴𝗲𝗺𝗲𝗻𝘁 𝗖𝗹𝗮𝗿𝗶𝘁𝘆: Understanding 𝘄𝗵𝘆 an AI system made a prediction is as important as the prediction itself. Circuit tracing lets us identify potential model weaknesses, biases, and failure modes before they impact real financial decisions. ▪️𝗕𝘂𝗶𝗹𝗱𝗶𝗻𝗴 𝗦𝘁𝗮𝗸𝗲𝗵𝗼𝗹𝗱𝗲𝗿 𝗧𝗿𝘂𝘀𝘁: When you can show clients, auditors, and board members the actual reasoning pathways of your AI systems, you transform mysterious algorithms into understandable tools. 𝗥𝗲𝗮𝗹 𝗘𝘅𝗮𝗺𝗽𝗹𝗲𝘀 𝗜 𝘁𝗲𝘀𝘁𝗲𝗱: ⭐ 𝗜𝗻𝗽𝘂𝘁 𝗣𝗿𝗼𝗺𝗽𝘁 𝟭: "Recent inflation data shows consumer prices rising 4.2% annually, while wages grow only 2.8%, indicating purchasing power is" Target: "declining" Attribution reveals: → Economic data parsing features (4.2%, 2.8%) → Mathematical comparison circuits (gap calculation) → Economic concept retrieval (purchasing power definition) → Causal reasoning pathways (inflation > wages = decline) → Final prediction: "declining" ⭐ 𝗜𝗻𝗽𝘂𝘁 𝗣𝗿𝗼𝗺𝗽𝘁 𝟮: "A company's debt-to-equity ratio of 2.5 compared to the industry average of 1.2 suggests the firm is" Target: "overleveraged" Circuit shows: → Financial ratio recognition → Comparative analysis features → Risk assessment pathways → Classification logic As Dario Amodei recently emphasized, our understanding of AI's inner workings has lagged far behind capability advances. In an industry where trust, transparency, and accountability aren't just nice-to-haves but regulatory requirements, this breakthrough couldn't come at a better time. The future of financial AI isn't just about better predictions, 𝗶𝘁'𝘀 𝗮𝗯𝗼𝘂𝘁 𝗽𝗿𝗲𝗱𝗶𝗰𝘁𝗶𝗼𝗻𝘀 𝘄𝗲 𝗰𝗮𝗻 𝘂𝗻𝗱𝗲𝗿𝘀𝘁𝗮𝗻𝗱, 𝗮𝘂𝗱𝗶𝘁, 𝗮𝗻𝗱 𝘁𝗿𝘂𝘀𝘁. #FinTech #AITransparency #ExplainableAI #RegTech #FinancialServices #CircuitTracing #AIGovernance #Anthropic

  • View profile for Linda Grasso
    Linda Grasso Linda Grasso is an Influencer

    Content Creator & Thought Leader | LinkedIn Top Voice | Infopreneur sharing insights on Productivity, Technology, and Sustainability 💡| Top 10 Tech Influencers

    14,126 followers

    Investing in technologies and methodologies that enhance AI transparency and explainability is crucial for building reliable and accepted systems by users, ensuring compliance, and achieving better business outcomes. AI Transparency Understanding and tracking how an AI system makes decisions is essential because it builds trust among users, customers, and stakeholders, facilitating the adoption and acceptance of AI technologies in a business context. AI Explainability Providing clear explanations for AI decisions helps users grasp the logic and reasons behind them. This reduces uncertainty and increases transparency, making AI systems more user-friendly and understandable in their operations. Investment in Technologies and Methodologies Invest in tools and platforms that support transparency and explainability, such as interpretable models, decision visualization tools, and AI auditing systems, alongside methodologies for ethical and documented decision-making processes. Business Benefits Increasing user trust in AI systems makes them more likely to be utilized and beneficial. Ensuring compliance with regulations and ethical standards prevents potential penalties and reputational damage, enhancing informed and strategic decision-making. Challenges and Considerations Implementing transparency and explainability in complex models, like deep neural networks, can be challenging. Balancing model performance and explainability is crucial, as simpler models are often more interpretable but less performant. Application Examples In the financial sector, explainable AI evaluates credit risk and justifies lending decisions. In healthcare, AI supports medical diagnoses and treatment recommendations with clear explanations, and in HR, AI clarifies candidate selection criteria. Tools and Frameworks Leverage tools like LIME (Local Interpretable Model-agnostic Explanations) for model prediction explanations, SHAP (SHapley Additive exPlanations) for model result interpretation, and IBM Watson OpenScale for monitoring and managing AI transparency. #AI #Transparency #Explainability Ring the bell to get notifications 🔔

Explore categories