Evaluating AI Recommendation System Performance

Explore top LinkedIn content from expert professionals.

Summary

Evaluating AI recommendation system performance involves measuring how well these systems deliver relevant, accurate, and useful suggestions to users, ensuring they meet business goals while improving user satisfaction.

  • Focus on meaningful metrics: Track metrics like user trust, task completion rate, and satisfaction scores instead of only surface-level data like response time or user count.
  • Address common challenges: Use advanced evaluation frameworks to tackle issues like unsupported claims, lack of context, and slow responses in AI systems.
  • Understand ranking relevance: Apply metrics like Normalized Discounted Cumulative Gain (NDCG) to evaluate how well recommendations are prioritized, emphasizing the most relevant options first.
Summarized by AI based on LinkedIn member posts
  • View profile for Brij kishore Pandey
    Brij kishore Pandey Brij kishore Pandey is an Influencer

    AI Architect | Strategist | Generative AI | Agentic AI

    689,990 followers

    Over the last year, I’ve seen many people fall into the same trap: They launch an AI-powered agent (chatbot, assistant, support tool, etc.)… But only track surface-level KPIs — like response time or number of users. That’s not enough. To create AI systems that actually deliver value, we need 𝗵𝗼𝗹𝗶𝘀𝘁𝗶𝗰, 𝗵𝘂𝗺𝗮𝗻-𝗰𝗲𝗻𝘁𝗿𝗶𝗰 𝗺𝗲𝘁𝗿𝗶𝗰𝘀 that reflect: • User trust • Task success • Business impact • Experience quality    This infographic highlights 15 𝘦𝘴𝘴𝘦𝘯𝘵𝘪𝘢𝘭 dimensions to consider: ↳ 𝗥𝗲𝘀𝗽𝗼𝗻𝘀𝗲 𝗔𝗰𝗰𝘂𝗿𝗮𝗰𝘆 — Are your AI answers actually useful and correct? ↳ 𝗧𝗮𝘀𝗸 𝗖𝗼𝗺𝗽𝗹𝗲𝘁𝗶𝗼𝗻 𝗥𝗮𝘁𝗲 — Can the agent complete full workflows, not just answer trivia? ↳ 𝗟𝗮𝘁𝗲𝗻𝗰𝘆 — Response speed still matters, especially in production. ↳ 𝗨𝘀𝗲𝗿 𝗘𝗻𝗴𝗮𝗴𝗲𝗺𝗲𝗻𝘁 — How often are users returning or interacting meaningfully? ↳ 𝗦𝘂𝗰𝗰𝗲𝘀𝘀 𝗥𝗮𝘁𝗲 — Did the user achieve their goal? This is your north star. ↳ 𝗘𝗿𝗿𝗼𝗿 𝗥𝗮𝘁𝗲 — Irrelevant or wrong responses? That’s friction. ↳ 𝗦𝗲𝘀𝘀𝗶𝗼𝗻 𝗗𝘂𝗿𝗮𝘁𝗶𝗼𝗻 — Longer isn’t always better — it depends on the goal. ↳ 𝗨𝘀𝗲𝗿 𝗥𝗲𝘁𝗲𝗻𝘁𝗶𝗼𝗻 — Are users coming back 𝘢𝘧𝘵𝘦𝘳 the first experience? ↳ 𝗖𝗼𝘀𝘁 𝗽𝗲𝗿 𝗜𝗻𝘁𝗲𝗿𝗮𝗰𝘁𝗶𝗼𝗻 — Especially critical at scale. Budget-wise agents win. ↳ 𝗖𝗼𝗻𝘃𝗲𝗿𝘀𝗮𝘁𝗶𝗼𝗻 𝗗𝗲𝗽𝘁𝗵 — Can the agent handle follow-ups and multi-turn dialogue? ↳ 𝗨𝘀𝗲𝗿 𝗦𝗮𝘁𝗶𝘀𝗳𝗮𝗰𝘁𝗶𝗼𝗻 𝗦𝗰𝗼𝗿𝗲 — Feedback from actual users is gold. ↳ 𝗖𝗼𝗻𝘁𝗲𝘅𝘁𝘂𝗮𝗹 𝗨𝗻𝗱𝗲𝗿𝘀𝘁𝗮𝗻𝗱𝗶𝗻𝗴 — Can your AI 𝘳𝘦𝘮𝘦𝘮𝘣𝘦𝘳 𝘢𝘯𝘥 𝘳𝘦𝘧𝘦𝘳 to earlier inputs? ↳ 𝗦𝗰𝗮𝗹𝗮𝗯𝗶𝗹𝗶𝘁𝘆 — Can it handle volume 𝘸𝘪𝘵𝘩𝘰𝘶𝘵 degrading performance? ↳ 𝗞𝗻𝗼𝘄𝗹𝗲𝗱𝗴𝗲 𝗥𝗲𝘁𝗿𝗶𝗲𝘃𝗮𝗹 𝗘𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝗰𝘆 — This is key for RAG-based agents. ↳ 𝗔𝗱𝗮𝗽𝘁𝗮𝗯𝗶𝗹𝗶𝘁𝘆 𝗦𝗰𝗼𝗿𝗲 — Is your AI learning and improving over time? If you're building or managing AI agents — bookmark this. Whether it's a support bot, GenAI assistant, or a multi-agent system — these are the metrics that will shape real-world success. 𝗗𝗶𝗱 𝗜 𝗺𝗶𝘀𝘀 𝗮𝗻𝘆 𝗰𝗿𝗶𝘁𝗶𝗰𝗮𝗹 𝗼𝗻𝗲𝘀 𝘆𝗼𝘂 𝘂𝘀𝗲 𝗶𝗻 𝘆𝗼𝘂𝗿 𝗽𝗿𝗼𝗷𝗲𝗰𝘁𝘀? Let’s make this list even stronger — drop your thoughts 👇

  • View profile for Sohrab Rahimi

    Partner at McKinsey & Company | Head of Data Science Guild in North America

    20,419 followers

    Many companies have started experimenting with simple RAG systems, probably as their first use case, to test the effectiveness of generative AI in extracting knowledge from unstructured data like PDFs, text files, and PowerPoint files. If you've used basic RAG architectures with tools like LlamaIndex or LangChain, you might have already encountered three key problems: 𝟭. 𝗜𝗻𝗮𝗱𝗲𝗾𝘂𝗮𝘁𝗲 𝗘𝘃𝗮𝗹𝘂𝗮𝘁𝗶𝗼𝗻 𝗠𝗲𝘁𝗿𝗶𝗰𝘀: Existing metrics fail to catch subtle errors like unsupported claims or hallucinations, making it hard to accurately assess and enhance system performance. 𝟮. 𝗗𝗶𝗳𝗳𝗶𝗰𝘂𝗹𝘁𝘆 𝗛𝗮𝗻𝗱𝗹𝗶𝗻𝗴 𝗖𝗼𝗺𝗽𝗹𝗲𝘅 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀: Standard RAG methods often struggle to find and combine information from multiple sources effectively, leading to slower responses and less relevant results. 𝟯. 𝗦𝘁𝗿𝘂𝗴𝗴𝗹𝗶𝗻𝗴 𝘁𝗼 𝗨𝗻𝗱𝗲𝗿𝘀𝘁𝗮𝗻𝗱 𝗖𝗼𝗻𝘁𝗲𝘅𝘁 𝗮𝗻𝗱 𝗖𝗼𝗻𝗻𝗲𝗰𝘁𝗶𝗼𝗻𝘀: Basic RAG approaches often miss the deeper relationships between information pieces, resulting in incomplete or inaccurate answers that don't fully meet user needs. In this post I will introduce three useful papers to address these gaps: 𝟭. 𝗥𝗔𝗚𝗖𝗵𝗲𝗸𝗲𝗿: introduces a new framework for evaluating RAG systems with a focus on fine-grained, claim-level metrics. It proposes a comprehensive set of metrics: claim-level precision, recall, and F1 score to measure the correctness and completeness of responses; claim recall and context precision to evaluate the effectiveness of the retriever; and faithfulness, noise sensitivity, hallucination rate, self-knowledge reliance, and context utilization to diagnose the generator's performance. Consider using these metrics to help identify errors, enhance accuracy, and reduce hallucinations in generated outputs. 𝟮. 𝗘𝗳𝗳𝗶𝗰𝗶𝗲𝗻𝘁𝗥𝗔𝗚: It uses a labeler and filter mechanism to identify and retain only the most relevant parts of retrieved information, reducing the need for repeated large language model calls. This iterative approach refines search queries efficiently, lowering latency and costs while maintaining high accuracy for complex, multi-hop questions. 𝟯. 𝗚𝗿𝗮𝗽𝗵𝗥𝗔𝗚: By leveraging structured data from knowledge graphs, GraphRAG methods enhance the retrieval process, capturing complex relationships and dependencies between entities that traditional text-based retrieval methods often miss. This approach enables the generation of more precise and context-aware content, making it particularly valuable for applications in domains that require a deep understanding of interconnected data, such as scientific research, legal documentation, and complex question answering. For example, in tasks such as query-focused summarization, GraphRAG demonstrates substantial gains by effectively leveraging graph structures to capture local and global relationships within documents. It's encouraging to see how quickly gaps are identified and improvements are made in the GenAI world.

  • View profile for Damien Benveniste, PhD
    Damien Benveniste, PhD Damien Benveniste, PhD is an Influencer

    Founder @ TheAiEdge | Follow me to learn about Machine Learning Engineering, Machine Learning System Design, MLOps, and the latest techniques and news about the field.

    172,978 followers

    If you want to know where the money is in Machine Learning, look no further than Recommender Systems! Recommender systems are usually a set of Machine Learning models that rank items and recommend them to users. We tend to care primarily about the top-ranked items, the rest being less critical. If we want to assess the quality of a specific recommendation, typical ML metrics may be less relevant. Let’s take the search results of a Google search query, for example. All the results are somewhat relevant, but we need to make sure that the most relevant items are at the top of the list. To capture the level of relevance, it is common to hire human labelers to rate the search results. It is a very expensive process and can be quite subjective since it involves humans. For example, we know that Google performed 757,583 search quality tests in 2021 using human raters: https://lnkd.in/gYqmmT2S. Normalized Discounted Cumulative Gain (NDCG) is a common metric to exploit relevance measured on a continuous spectrum. Let’s break that metric down. Using the relevance labels we can compute diverse metrics to measure the quality of the recommendation. The cumulative gain (CG) metric answers the question: How much relevance is contained in the recommended list? To get a quantitative answer to that question, we simply add the relevance scores provided by the labeler: CG = relevance 1 + relevance 2 + ... The problem with cumulative gain is that it doesn’t take into account the position of the search results. Any order would give the same value however we want the most relevant items at the top. Discounted cumulative gain (DCG) discounts relevance scores based on their position in the list. The discount is usually done with a log function, but other monotonic functions could be used: DCG = relevance 1 / log(position 1) + relevance 2 / log(position 2) + ... DCG is quite dependent on the specific values used to describe relevance. Even with strict guidelines, some labelers may use high numbers and others low numbers. To put those different DCG values on the same level, we normalize them by the highest value DCG can take. The highest value corresponds to the ideal ordering of the recommended items. We call the DCG for ideal ordering the Ideal Discounted Cumulative Gain (IDCG). The Normalized Discounted Cumulative Gain (NDCG) is the normalized DCG NDCG = DCG / IDCG If the relevance scores are all positive, then NDCG is contained in the range [0, 1], where 1 is the ideal ordering of the recommendation. #MachineLearning #DataScience #ArtificialIntelligence

Explore categories