AI & Practical Steps CISOs Can Take Now! Too much buzz around LLMs can paralyze security leaders. Reality is that, AI isn’t magic! So apply the same foundational security fundamentals. Here’s how to build a real AI security policy: 🔍 Discover AI Usage: Map who’s using AI, where it lives in your org, and intended use cases. 🔐 Govern Your Data: Classify & encrypt sensitive data. Know what data is used in AI tools, and where it goes. 🧠 Educate Users: Train teams on safe AI use. Teach spotting hallucinations and avoiding risky data sharing. 🛡️ Scan Models for Threats: Inspect model files for malware, backdoors, or typosquatting. Treat model files like untrusted code. 📈 Profile Risks (just like Cloud or BYOD): Create an executive-ready risk matrix. Document use cases, threats, business impact, and risk appetite. These steps aren’t flashy but they guard against real risks: data leaks, poisoning, serialization attacks, supply chain threats.
How Security Teams can Integrate AI
Explore top LinkedIn content from expert professionals.
Summary
Integrating AI into security operations involves combining traditional cybersecurity practices with strategies tailored to managing AI-specific risks. By addressing data security, user education, and operational safeguards, security teams can effectively mitigate vulnerabilities while optimizing AI's potential.
- Secure data access: Protect sensitive data by implementing encryption, access controls, and governance policies to prevent unauthorized use in AI systems.
- Train for safe usage: Provide comprehensive education to teams on securely utilizing AI, including identifying risks like data poisoning and avoiding unsafe data sharing.
- Design robust systems: Establish strong infrastructure, monitor AI models and updates, and ensure secure system configurations to guard against threats and vulnerabilities.
-
-
The Cyber Security Agency of Singapore (CSA) has published “Guidelines on Securing AI Systems,” to help system owners manage security risks in the use of AI throughout the five stages of the AI lifecycle. 1. Planning and Design: - Raise awareness and competency on security by providing training and guidance on the security risks of #AI to all personnel, including developers, system owners and senior leaders. - Conduct a #riskassessment and supplement it by continuous monitoring and a strong feedback loop. 2. Development: - Secure the #supplychain (training data, models, APIs, software libraries) - Ensure that suppliers appropriately manage risks by adhering to #security policies or internationally recognized standards. - Consider security benefits and trade-offs such as complexity, explainability, interpretability, and sensitivity of training data when selecting the appropriate model to use (#machinelearning, deep learning, #GenAI). - Identify, track and protect AI-related assets, including models, #data, prompts, logs and assessments. - Secure the #artificialintelligence development environment by applying standard infrastructure security principles like #accesscontrols and logging/monitoring, segregation of environments, and secure-by-default configurations. 3. Deployment: - Establish #incidentresponse, escalation and remediation plans. - Release #AIsystems only after subjecting them to appropriate and effective security checks and evaluation. 4. Operations and Maintenance: - Monitor and log inputs (queries, prompts and requests) and outputs to ensure they are performing as intended. - Adopt a secure-by-design approach to updates and continuous learning. - Establish a vulnerability disclosure process for users to share potential #vulnerabilities to the system. 5. End of Life: - Ensure proper data and model disposal according to relevant industry standards or #regulations.
-
Yesterday, the National Security Agency Artificial Intelligence Security Center published the joint Cybersecurity Information Sheet Deploying AI Systems Securely in collaboration with the Cybersecurity and Infrastructure Security Agency, the Federal Bureau of Investigation (FBI), the Australian Signals Directorate’s Australian Cyber Security Centre, the Canadian Centre for Cyber Security, the New Zealand National Cyber Security Centre, and the United Kingdom’s National Cyber Security Centre. Deploying AI securely demands a strategy that tackles AI-specific and traditional IT vulnerabilities, especially in high-risk environments like on-premises or private clouds. Authored by international security experts, the guidelines stress the need for ongoing updates and tailored mitigation strategies to meet unique organizational needs. 🔒 Secure Deployment Environment: * Establish robust IT infrastructure. * Align governance with organizational standards. * Use threat models to enhance security. 🏗️ Robust Architecture: * Protect AI-IT interfaces. * Guard against data poisoning. * Implement Zero Trust architectures. 🔧 Hardened Configurations: * Apply sandboxing and secure settings. * Regularly update hardware and software. 🛡️ Network Protection: * Anticipate breaches; focus on detection and quick response. * Use advanced cybersecurity solutions. 🔍 AI System Protection: * Regularly validate and test AI models. * Encrypt and control access to AI data. 👮 Operation and Maintenance: * Enforce strict access controls. * Continuously educate users and monitor systems. 🔄 Updates and Testing: * Conduct security audits and penetration tests. * Regularly update systems to address new threats. 🚨 Emergency Preparedness: * Develop disaster recovery plans and immutable backups. 🔐 API Security: * Secure exposed APIs with strong authentication and encryption. This framework helps reduce risks and protect sensitive data, ensuring the success and security of AI systems in a dynamic digital ecosystem. #cybersecurity #CISO #leadership