Strategies to Prevent Code Attacks in AI

Explore top LinkedIn content from expert professionals.

Summary

Protecting AI systems from code-based attacks involves implementing preventive strategies to secure AI applications against threats like data poisoning, unauthorized code execution, or model tampering. These approaches ensure the safety, reliability, and integrity of AI technologies in an increasingly interconnected world.

  • Restrict access and permissions: Limit what AI models and agents can access by enforcing strict permission controls and requiring human approval for sensitive actions.
  • Validate training data: Use trusted data repositories, conduct thorough reviews, and simulate attacks to ensure the dataset is clean and minimizes vulnerabilities.
  • Monitor AI behavior: Set up continuous monitoring, logging, and cryptographic authentication to detect and address potential security threats in real time.
Summarized by AI based on LinkedIn member posts
  • View profile for Leonard Rodman, M.Sc. PMP® LSSBB® CSM® CSPO®

    Follow me and learn about AI for free! | AI Consultant and Influencer | API Automation Developer/Engineer | DM me for promotions

    53,097 followers

    Whether you’re integrating a third-party AI model or deploying your own, adopt these practices to shrink your exposed surfaces to attackers and hackers: • Least-Privilege Agents – Restrict what your chatbot or autonomous agent can see and do. Sensitive actions should require a human click-through. • Clean Data In, Clean Model Out – Source training data from vetted repositories, hash-lock snapshots, and run red-team evaluations before every release. • Treat AI Code Like Stranger Code – Scan, review, and pin dependency hashes for anything an LLM suggests. New packages go in a sandbox first. • Throttle & Watermark – Rate-limit API calls, embed canary strings, and monitor for extraction patterns so rivals can’t clone your model overnight. • Choose Privacy-First Vendors – Look for differential privacy, “machine unlearning,” and clear audit trails—then mask sensitive data before you ever hit Send. Rapid-fire user checklist: verify vendor audits, separate test vs. prod, log every prompt/response, keep SDKs patched, and train your team to spot suspicious prompts. AI security is a shared-responsibility model, just like the cloud. Harden your pipeline, gate your permissions, and give every line of AI-generated output the same scrutiny you’d give a pull request. Your future self (and your CISO) will thank you. 🚀🔐

  • View profile for Katharina Koerner

    AI Governance & Security I Trace3 : All Possibilities Live in Technology: Innovating with risk-managed AI: Strategies to Advance Business Goals through AI Governance, Privacy & Security

    44,341 followers

    This new guide from the OWASP® Foundation Agentic Security Initiative for developers, architects, security professionals, and platform engineers building or securing agentic AI applications, published Feb 17, 2025, provides a threat-model-based reference for understanding emerging agentic AI threats and their mitigations. Link: https://lnkd.in/gFVHb2BF * * * The OWASP Agentic AI Threat Model highlights 15 major threats in AI-driven agents and potential mitigations: 1️⃣ Memory Poisoning – Prevent unauthorized data manipulation via session isolation & anomaly detection. 2️⃣ Tool Misuse – Enforce strict tool access controls & execution monitoring to prevent unauthorized actions. 3️⃣ Privilege Compromise – Use granular permission controls & role validation to prevent privilege escalation. 4️⃣ Resource Overload – Implement rate limiting & adaptive scaling to mitigate system failures. 5️⃣ Cascading Hallucinations – Deploy multi-source validation & output monitoring to reduce misinformation spread. 6️⃣ Intent Breaking & Goal Manipulation – Use goal alignment audits & AI behavioral tracking to prevent agent deviation. 7️⃣ Misaligned & Deceptive Behaviors – Require human confirmation & deception detection for high-risk AI decisions. 8️⃣ Repudiation & Untraceability – Ensure cryptographic logging & real-time monitoring for accountability. 9️⃣ Identity Spoofing & Impersonation – Strengthen identity validation & trust boundaries to prevent fraud. 🔟 Overwhelming Human Oversight – Introduce adaptive AI-human interaction thresholds to prevent decision fatigue. 1️⃣1️⃣ Unexpected Code Execution (RCE) – Sandbox execution & monitor AI-generated scripts for unauthorized actions. 1️⃣2️⃣ Agent Communication Poisoning – Secure agent-to-agent interactions with cryptographic authentication. 1️⃣3️⃣ Rogue Agents in Multi-Agent Systems – Monitor for unauthorized agent activities & enforce policy constraints. 1️⃣4️⃣ Human Attacks on Multi-Agent Systems – Restrict agent delegation & enforce inter-agent authentication. 1️⃣5️⃣ Human Manipulation – Implement response validation & content filtering to detect manipulated AI outputs. * * * The Agentic Threats Taxonomy Navigator then provides a structured approach to identifying and assessing agentic AI security risks by leading though 6 questions: 1️⃣ Autonomy & Reasoning Risks – Does the AI autonomously decide steps to achieve goals? 2️⃣ Memory-Based Threats – Does the AI rely on stored memory for decision-making? 3️⃣ Tool & Execution Threats – Does the AI use tools, system commands, or external integrations? 4️⃣ Authentication & Spoofing Risks – Does AI require authentication for users, tools, or services? 5️⃣ Human-In-The-Loop (HITL) Exploits – Does AI require human engagement for decisions? 6️⃣ Multi-Agent System Risks – Does the AI system rely on multiple interacting agents?

  • View profile for Razi R.

    ↳ Driving AI Innovation Across Security, Cloud & Trust | Senior PM @ Microsoft | O’Reilly Author | Industry Advisor

    13,022 followers

    The Secure AI Lifecycle (SAIL) Framework is one of the actionable roadmaps for building trustworthy and secure AI systems. Key highlights include: • Mapping over 70 AI-specific risks across seven phases: Plan, Code, Build, Test, Deploy, Operate, Monitor • Introducing “Shift Up” security to protect AI abstraction layers like agents, prompts, and toolchains • Embedding AI threat modeling, governance alignment, and secure experimentation from day one • Addressing critical risks including prompt injection, model evasion, data poisoning, plugin misuse, and cross-domain prompt attacks • Integrating runtime guardrails, red teaming, sandboxing, and telemetry for continuous protection • Aligning with NIST AI RMF, ISO 42001, OWASP Top 10 for LLMs, and DASF v2.0 • Promoting cross-functional accountability across AppSec, MLOps, LLMOps, Legal, and GRC teams Who should take note: • Security architects deploying foundation models and AI-enhanced apps • MLOps and product teams working with agents, RAG pipelines, and autonomous workflows • CISOs aligning AI risk posture with compliance and regulatory needs • Policymakers and governance leaders setting enterprise-wide AI strategy Noteworthy aspects: • Built-in operational guidance with security embedded across the full AI lifecycle • Lifecycle-aware mitigations for risks like context evictions, prompt leaks, model theft, and abuse detection • Human-in-the-loop checkpoints, sandboxed execution, and audit trails for real-world assurance • Designed for both code and no-code AI platforms with complex dependency stacks Actionable step: Use the SAIL Framework to create a unified AI risk and security model with clear roles, security gates, and monitoring practices across teams. Consideration: Security in the AI era is more than a tech problem. It is an organizational imperative that demands shared responsibility, executive alignment, and continuous vigilance.

Explore categories