Real-World Applications Of AI Frameworks In Tech

Explore top LinkedIn content from expert professionals.

Summary

AI frameworks play a critical role in developing and deploying intelligent systems by providing the tools needed for automation, advanced reasoning, and seamless integration. These frameworks enable the creation of AI agents that perform complex tasks, from business process automation to decision-making and interactive applications.

  • Match frameworks to needs: Choose an AI framework based on your project’s complexity and goals, whether you need simple workflow automation (e.g., n8n) or advanced reasoning capabilities (e.g., LangGraph).
  • Explore emerging frameworks: Look into innovative platforms like Agent S2 for advanced multi-step workflows or RARE for dynamic, real-time reasoning in high-stakes fields such as healthcare and law.
  • Embrace integration potential: Use frameworks like Microsoft AutoGen or GUI-based systems to automate tasks across fragmented environments without heavy reliance on APIs or extensive coding.
Summarized by AI based on LinkedIn member posts
  • View profile for Brij kishore Pandey
    Brij kishore Pandey Brij kishore Pandey is an Influencer

    AI Architect | Strategist | Generative AI | Agentic AI

    689,992 followers

    When working with Agentic AI, selecting the right framework is crucial. Each one brings different strengths depending on your project needs — from modular agent designs to large-scale enterprise security. Here's a structured breakdown: ➔ 𝗔𝗗𝗞 (𝗚𝗼𝗼𝗴𝗹𝗲) • Features: Flexible, modular framework for AI agents with Gemini support • Advantages: Rich tool ecosystem, flexible orchestration • Applications: Conversational AI, complex autonomous systems ➔ 𝗟𝗮𝗻𝗴𝗚𝗿𝗮𝗽𝗵 • Features: Stateful workflows, graph-based execution, human-in-the-loop • Advantages: Dynamic workflows, complex stateful AI, enhanced traceability • Applications: Interactive storytelling, decision-making systems ➔ 𝗖𝗿𝗲𝘄𝗔𝗜 • Features: Role-based agents, dynamic task planning, conflict resolution • Advantages: Scalable teams, collaborative AI, decision optimization • Applications: Project simulations, business strategy, healthcare coordination ➔ 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗦𝗲𝗺𝗮𝗻𝘁𝗶𝗰 𝗞𝗲𝗿𝗻𝗲𝗹 • Features: AI SDK integration, security, memory & embeddings • Advantages: Enterprise-grade security, scalable architecture • Applications: Enterprise apps, workflow automation ➔ 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗔𝘂𝘁𝗼𝗚𝗲𝗻 • Features: Multi-agent conversations, context management, custom roles • Advantages: Simplifies multi-agent orchestration, robust error handling • Applications: Advanced chatbots, task planning, AI research ➔ 𝗦𝗺𝗼𝗹𝗔𝗴𝗲𝗻𝘁𝘀 • Features: Lightweight, modular multi-agent framework • Advantages: Low-compute overhead, seamless integration • Applications: Research assistants, data analysis, AI workflows ➔ 𝗔𝘂𝘁𝗼𝗚𝗣𝗧 • Features: Goal-oriented task execution, adaptive learning • Advantages: Self-improving, scalable, minimal human intervention • Applications: Content creation, task automation, predictive analysis    Choosing the right Agentic AI framework is less about the "most powerful" and more about 𝗺𝗮𝘁𝗰𝗵𝗶𝗻𝗴 𝘁𝗵𝗲 𝗳𝗿𝗮𝗺𝗲𝘄𝗼𝗿𝗸’𝘀 𝗰𝗮𝗽𝗮𝗯𝗶𝗹𝗶𝘁𝗶𝗲𝘀 𝘁𝗼 𝘆𝗼𝘂𝗿 𝗽𝗿𝗼𝗷𝗲𝗰𝘁'𝘀 𝗰𝗼𝗺𝗽𝗹𝗲𝘅𝗶𝘁𝘆, 𝘀𝗰𝗮𝗹𝗲, 𝗮𝗻𝗱 𝗴𝗼𝗮𝗹𝘀. → Which one have you used or are excited to try? → Did I miss any emerging frameworks that deserve attention?

  • View profile for Manthan Patel

    I teach AI Agents and Lead Gen | Lead Gen Man(than) | 100K+ students

    149,622 followers

    Everyone's building AI agents, but few understand the Agentic frameworks that power them. These two distinct frameworks are the most used frameworks in 2025, and they aren't competitors but complementary approaches to agent development: 𝗻𝟴𝗻 (𝗩𝗶𝘀𝘂𝗮𝗹 𝗪𝗼𝗿𝗸𝗳𝗹𝗼𝘄 𝗔𝘂𝘁𝗼𝗺𝗮𝘁𝗶𝗼𝗻) - Creates visual connections between AI agents and business tools - Flow: Trigger → AI Agent → Tools/APIs → Action - Solves integration complexity and enables rapid deployment - Think of it as the visual orchestrator connecting AI to your entire tech stack 𝗟𝗮𝗻𝗴𝗚𝗿𝗮𝗽𝗵 (𝗚𝗿𝗮𝗽𝗵-𝗯𝗮𝘀𝗲𝗱 𝗔𝗴𝗲𝗻𝘁 𝗢𝗿𝗰𝗵𝗲𝘀𝘁𝗿𝗮𝘁𝗶𝗼𝗻) by LangChain - Enables stateful, cyclical agent workflows with precise control - Flow: State → Agents → Conditional Logic → State (cycles) - Solves complex reasoning and multi-step agent coordination - Think of it as the brain that manages sophisticated agent decision-making Beyond technicality, each framework has its core strengths. 𝗪𝗵𝗲𝗻 𝘁𝗼 𝘂𝘀𝗲 𝗻𝟴𝗻: - Integrating AI agents with existing business tools - Building customer support automation - Creating no-code AI workflows for teams - Needing quick deployment with 700+ integrations 𝗪𝗵𝗲𝗻 𝘁𝗼 𝘂𝘀𝗲 𝗟𝗮𝗻𝗴𝗚𝗿𝗮𝗽𝗵: - Building complex multi-agent reasoning systems - Creating enterprise-grade AI applications - Developing agents with cyclical workflows - Needing fine-grained state management Both frameworks are gaining significant traction: 𝗻𝟴𝗻 𝗘𝗰𝗼𝘀𝘆𝘀𝘁𝗲𝗺: - Visual workflow builder for non-developers - Self-hostable open-source option - Strong business automation community 𝗟𝗮𝗻𝗴𝗚𝗿𝗮𝗽𝗵 𝗘𝗰𝗼𝘀𝘆𝘀𝘁𝗲𝗺: - Full LangChain ecosystem integration - LangSmith observability and debugging - Advanced state persistence capabilities Top AI solutions integrate both n8n and LangGraph to maximize their potential. - Use n8n for visual orchestration and business tool integration - Use LangGraph for complex agent logic and state management - Think in layers: business automation AND sophisticated reasoning Over to you: What AI agent use case would you build - one that needs visual simplicity (n8n) or complex orchestration (LangGraph)?

  • View profile for Sohrab Rahimi

    Partner at McKinsey & Company | Head of Data Science Guild in North America

    20,420 followers

    Recent research is advancing two critical areas in AI: autonomy and reasoning, building on their strengths to make them more autonomous and adaptable for real-world applications. Here is a summary of a few papers that I found interesting and rather transformative: • 𝐋𝐋𝐌-𝐁𝐫𝐚𝐢𝐧𝐞𝐝 𝐆𝐔𝐈 𝐀𝐠𝐞𝐧𝐭𝐬 (𝐌𝐢𝐜𝐫𝐨𝐬𝐨𝐟𝐭): These agents use LLMs to interact directly with graphical interfaces—screenshots, widget trees, and user inputs—bypassing the need for APIs or scripts. They can execute multi-step workflows through natural language, automating tasks across web, mobile, and desktop platforms. • 𝐀𝐅𝐋𝐎𝐖: By treating workflows as code-represented graphs, AFLOW dynamically optimizes processes using modular operators like “generate” and “review/revise.” This framework demonstrates how smaller, specialized models can rival larger, general-purpose systems, making automation more accessible and cost-efficient for businesses of all sizes. • 𝐑𝐞𝐭𝐫𝐢𝐞𝐯𝐚𝐥-𝐀𝐮𝐠𝐦𝐞𝐧𝐭𝐞𝐝 𝐑𝐞𝐚𝐬𝐨𝐧𝐢𝐧𝐠 (𝐑𝐀𝐑𝐄): RARE integrates real-time knowledge retrieval with logical reasoning steps, enabling LLMs to adapt dynamically to fact-intensive tasks. This is critical in fields like healthcare and legal workflows, where accurate and up-to-date information is essential for decision-making. • 𝐇𝐢𝐀𝐑-𝐈𝐂𝐋:: Leveraging Monte Carlo Tree Search (MCTS), this framework teaches LLMs to navigate abstract decision trees, allowing them to reason flexibly beyond linear steps. It excels in solving multi-step, structured problems like mathematical reasoning, achieving state-of-the-art results on challenging benchmarks. By removing the reliance on APIs and scripts, systems like GUI agents and AFLOW make automation far more flexible and scalable. Businesses can now automate across fragmented ecosystems, reducing development cycles and empowering non-technical users to design and execute workflows. Simultaneously, reasoning frameworks like RARE and HiAR-ICL enable LLMs to adapt to new information and solve open-ended problems, particularly in high-stakes domains like healthcare and law. These studies highlight key emerging trends in AI: 1. APIs and Simplifying Integration: A major trend is the move away from API dependencies, with AI systems integrating directly into existing software environments through natural language and GUI interaction. This addresses one of the largest barriers to AI adoption in organizations. 2. Redefining User Interfaces: Traditional app interfaces with icons and menus are being reimagined. With conversational AI, users can simply ask for what they need, and the system executes it autonomously. 3. Tackling More Complex Tasks Autonomously: As reasoning capabilities improve, AI systems are expanding their range of activities and elevating their ability to plan and adapt. As these trends unfold, we’re witnessing the beginning of a new era in AI. Where do you see the next big research trends in AI heading?

  • View profile for Sahar Mor

    I help researchers and builders make sense of AI | ex-Stripe | aitidbits.ai | Angel Investor

    40,822 followers

    Simular AI recently released Agent S2 - an open-source framework that outperforms OpenAI's and Anthropic's Computer-Use Agents across every major benchmark. The new framework introduces a compositional generalist-specialist architecture that changes how AI agents interact with computer interfaces. While existing solutions struggle with complex GUI navigation and multi-step workflows, Agent S2 achieves state-of-the-art results through intelligent task decomposition and experience-based learning. Highlights: (1) OSWorld benchmark - achieves 34% success rate on 50-step tasks, surpassing OpenAI's CUA at 32% (3) AndroidWorld - reaches 54% success rate, beating UI-TARS' 46% by a significant margin (4) Cross-platform support - works seamlessly across Mac, Windows, and Linux environments with a unified API What sets Agent S2 apart is its ability to learn from past interactions and build a knowledge base that continually improves performance. The framework leverages UI-TARS for visual grounding and integrates Perplexica for web-knowledge retrieval, enabling agents to handle tasks that require both GUI manipulation and real-time information gathering. For developers building automation tools, QA systems, or accessibility solutions, Agent S2 provides the missing infrastructure for reliable computer-use agents that actually work in production. GitHub repo https://lnkd.in/g2H-xcKM This repo and 40+ curated open-source frameworks and libraries for AI agents builders in my recent post https://lnkd.in/g3fntJVc 

Explore categories