How to Evaluate AI Agent Stacks

Explore top LinkedIn content from expert professionals.

Summary

Understanding how to evaluate AI agent stacks is essential for ensuring these adaptive systems perform reliably and align with business outcomes. This process involves assessing the decision-making, adaptability, and long-term behavior of agents that go beyond simple predictions to perform complex, multi-step actions.

  • Track key performance metrics: Focus on outcomes such as task success, response consistency, and adaptability to unexpected scenarios rather than solely measuring accuracy or speed.
  • Implement structured monitoring: Use tools and frameworks to evaluate aspects like memory usage, tool selection, and coordination in multi-agent environments to identify improvement areas.
  • Adopt time-aware evaluations: Continuously monitor agent behavior over time to detect performance drifts, behavioral inconsistencies, and learning or degradation trends.
Summarized by AI based on LinkedIn member posts
  • View profile for Sohrab Rahimi

    Partner at McKinsey & Company | Head of Data Science Guild in North America

    20,419 followers

    Evaluating LLMs is hard. Evaluating agents is even harder. This is one of the most common challenges I see when teams move from using LLMs in isolation to deploying agents that act over time, use tools, interact with APIs, and coordinate across roles. These systems make a series of decisions, not just a single prediction. As a result, success or failure depends on more than whether the final answer is correct. Despite this, many teams still rely on basic task success metrics or manual reviews. Some build internal evaluation dashboards, but most of these efforts are narrowly scoped and miss the bigger picture. Observability tools exist, but they are not enough on their own. Google’s ADK telemetry provides traces of tool use and reasoning chains. LangSmith gives structured logging for LangChain-based workflows. Frameworks like CrewAI, AutoGen, and OpenAgents expose role-specific actions and memory updates. These are helpful for debugging, but they do not tell you how well the agent performed across dimensions like coordination, learning, or adaptability. Two recent research directions offer much-needed structure. One proposes breaking down agent evaluation into behavioral components like plan quality, adaptability, and inter-agent coordination. Another argues for longitudinal tracking, focusing on how agents evolve over time, whether they drift or stabilize, and whether they generalize or forget. If you are evaluating agents today, here are the most important criteria to measure: • 𝗧𝗮𝘀𝗸 𝘀𝘂𝗰𝗰𝗲𝘀𝘀: Did the agent complete the task, and was the outcome verifiable? • 𝗣𝗹𝗮𝗻 𝗾𝘂𝗮𝗹𝗶𝘁𝘆: Was the initial strategy reasonable and efficient? • 𝗔𝗱𝗮𝗽𝘁𝗮𝘁𝗶𝗼𝗻: Did the agent handle tool failures, retry intelligently, or escalate when needed? • 𝗠𝗲𝗺𝗼𝗿𝘆 𝘂𝘀𝗮𝗴𝗲: Was memory referenced meaningfully, or ignored? • 𝗖𝗼𝗼𝗿𝗱𝗶𝗻𝗮𝘁𝗶𝗼𝗻 (𝗳𝗼𝗿 𝗺𝘂𝗹𝘁𝗶-𝗮𝗴𝗲𝗻𝘁 𝘀𝘆𝘀𝘁𝗲𝗺𝘀): Did agents delegate, share information, and avoid redundancy? • 𝗦𝘁𝗮𝗯𝗶𝗹𝗶𝘁𝘆 𝗼𝘃𝗲𝗿 𝘁𝗶𝗺𝗲: Did behavior remain consistent across runs or drift unpredictably? For adaptive agents or those in production, this becomes even more critical. Evaluation systems should be time-aware, tracking changes in behavior, error rates, and success patterns over time. Static accuracy alone will not explain why an agent performs well one day and fails the next. Structured evaluation is not just about dashboards. It is the foundation for improving agent design. Without clear signals, you cannot diagnose whether failure came from the LLM, the plan, the tool, or the orchestration logic. If your agents are planning, adapting, or coordinating across steps or roles, now is the time to move past simple correctness checks and build a robust, multi-dimensional evaluation framework. It is the only way to scale intelligent behavior with confidence.

  • View profile for Armand Ruiz
    Armand Ruiz Armand Ruiz is an Influencer

    building AI systems

    202,067 followers

    You've built your AI agent... but how do you know it's not failing silently in production? Building AI agents is only the beginning. If you’re thinking of shipping agents into production without a solid evaluation loop, you’re setting yourself up for silent failures, wasted compute, and eventully broken trust. Here’s how to make your AI agents production-ready with a clear, actionable evaluation framework: 𝟭. 𝗜𝗻𝘀𝘁𝗿𝘂𝗺𝗲𝗻𝘁 𝘁𝗵𝗲 𝗥𝗼𝘂𝘁𝗲𝗿 The router is your agent’s control center. Make sure you’re logging: - Function Selection: Which skill or tool did it choose? Was it the right one for the input? - Parameter Extraction: Did it extract the correct arguments? Were they formatted and passed correctly? ✅ Action: Add logs and traces to every routing decision. Measure correctness on real queries, not just happy paths. 𝟮. 𝗠𝗼𝗻𝗶𝘁𝗼𝗿 𝘁𝗵𝗲 𝗦𝗸𝗶𝗹𝗹𝘀 These are your execution blocks; API calls, RAG pipelines, code snippets, etc. You need to track: - Task Execution: Did the function run successfully? - Output Validity: Was the result accurate, complete, and usable? ✅ Action: Wrap skills with validation checks. Add fallback logic if a skill returns an invalid or incomplete response. 𝟯. 𝗘𝘃𝗮𝗹𝘂𝗮𝘁𝗲 𝘁𝗵𝗲 𝗣𝗮𝘁𝗵 This is where most agents break down in production: taking too many steps or producing inconsistent outcomes. Track: - Step Count: How many hops did it take to get to a result? - Behavior Consistency: Does the agent respond the same way to similar inputs? ✅ Action: Set thresholds for max steps per query. Create dashboards to visualize behavior drift over time. 𝟰. 𝗗𝗲𝗳𝗶𝗻𝗲 𝗦𝘂𝗰𝗰𝗲𝘀𝘀 𝗠𝗲𝘁𝗿𝗶𝗰𝘀 𝗧𝗵𝗮𝘁 𝗠𝗮𝘁𝘁𝗲𝗿 Don’t just measure token count or latency. Tie success to outcomes. Examples: - Was the support ticket resolved? - Did the agent generate correct code? - Was the user satisfied? ✅ Action: Align evaluation metrics with real business KPIs. Share them with product and ops teams. Make it measurable. Make it observable. Make it reliable. That’s how enterprises scale AI agents. Easier said than done.

  • View profile for Aishwarya Naresh Reganti

    Founder @ LevelUp Labs | Ex-AWS | Consulting, Training & Investing in AI

    113,609 followers

    ⛳ This is a really solid report by Google on what it takes to build agents end-to-end. Covers the full stack: agent ops, evals, multi-agent setups, and more. If you’re already working in the space, much of it might feel familiar, but it’s packaged nicely and helps answer two key questions: 1. What does it take to build useful agents today? 2. Where do things usually break down? Some highlights I appreciated: ⛳ Agent Ops is framed as the backbone of reliable agent systems. It covers orchestration, memory, tool management and prompt design. Loved the emphasis on modular thinking. ⛳ Evaluation: One of the best breakdowns I’ve seen—moves past just “was the final output good?” to look at agent capabilities, tool usage, and action trajectory. Especially liked the focus on Human-in-the-Loop evaluation for nuanced tasks. ⛳ They introduce the concept of contract-Adhering Agents for high-stakes environments—agents that can follow constraints, negotiate task scopes, and even delegate via subcontracts. Feels like how we might bring real-world accountability into agent behavior. ⛳ Future Directions: Touches on long-term memory, explainability, agent communication protocols, and real-world grounding. Also has thoughtful notes on evaluation becoming more scenario-aware and continuous. There are some Vertex AI–specific sections you can skim, but well worth the read. And I turned it into a mind map on NotebookLM for the image below, it also helped me read it much faster :) Link: https://lnkd.in/eTCqeS6M

Explore categories