|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<!-- new sections -->\n", |
| 8 | + "<!-- Ensemble learning -->\n", |
| 9 | + "<!-- - Machine Learning Flach, Ch.11 -->\n", |
| 10 | + "<!-- - Machine Learning Mohri, pp.135- -->\n", |
| 11 | + "<!-- - Data Mining Witten, Ch. 8 -->" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 1, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [ |
| 19 | + { |
| 20 | + "data": { |
| 21 | + "image/png": "../../../python_for_probability_statistics_and_machine_learning.jpg", |
| 22 | + "text/plain": [ |
| 23 | + "<IPython.core.display.Image object>" |
| 24 | + ] |
| 25 | + }, |
| 26 | + "execution_count": 1, |
| 27 | + "metadata": {}, |
| 28 | + "output_type": "execute_result" |
| 29 | + } |
| 30 | + ], |
| 31 | + "source": [ |
| 32 | + "from IPython.display import Image \n", |
| 33 | + "Image('../../../python_for_probability_statistics_and_machine_learning.jpg')" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "cell_type": "code", |
| 38 | + "execution_count": 1, |
| 39 | + "metadata": { |
| 40 | + "attributes": { |
| 41 | + "classes": [], |
| 42 | + "id": "", |
| 43 | + "n": "1" |
| 44 | + }, |
| 45 | + "collapsed": true |
| 46 | + }, |
| 47 | + "outputs": [], |
| 48 | + "source": [ |
| 49 | + "from pprint import pprint\n", |
| 50 | + "import textwrap\n", |
| 51 | + "import sys, re\n", |
| 52 | + "def displ(x):\n", |
| 53 | + " if x is None: return\n", |
| 54 | + " print (\"\\n\".join(textwrap.wrap(repr(x).replace(' ',''),width=80)))\n", |
| 55 | + "\n", |
| 56 | + "sys.displayhook=displ" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "markdown", |
| 61 | + "metadata": {}, |
| 62 | + "source": [ |
| 63 | + "With the exception of the random forest, we have so far considered machine\n", |
| 64 | + "learning models as stand-alone entities. Combinations of models that jointly\n", |
| 65 | + "produce a classification are known as *ensembles*. There are two main\n", |
| 66 | + "methodologies that create ensembles: *bagging* and *boosting*.\n", |
| 67 | + "\n", |
| 68 | + "## Bagging\n", |
| 69 | + "\n", |
| 70 | + "Bagging refers to bootstrap aggregating, where bootstrap here is the same as we\n", |
| 71 | + "discussed in the section [ch:stats:sec:boot](#ch:stats:sec:boot). Basically,\n", |
| 72 | + "we resample the data with replacement and then train a classifier on the newly\n", |
| 73 | + "sampled data. Then, we combine the outputs of each of the individual\n", |
| 74 | + "classifiers using a majority-voting scheme (for discrete outputs) or a weighted\n", |
| 75 | + "average (for continuous outputs). This combination is particularly effective\n", |
| 76 | + "for models that are easily influenced by a single data element. The resampling\n", |
| 77 | + "process means that these elements cannot appear in every bootstrapped\n", |
| 78 | + "training set so that some of the models will not suffer these effects. This\n", |
| 79 | + "makes the so-computed combination of outputs less volatile. Thus, bagging\n", |
| 80 | + "helps reduce the collective variance of individual high-variance models.\n", |
| 81 | + "\n", |
| 82 | + "To get a sense of bagging, let's suppose we have a two-dimensional plane that\n", |
| 83 | + "is partitioned into two regions with the following boundary: $y=-x+x^2$.\n", |
| 84 | + "Pairs of $(x_i,y_i)$ points above this boundary are labeled one and points\n", |
| 85 | + "below are labeled zero. [Figure](#fig:ensemble_001) shows the two regions\n", |
| 86 | + "with the nonlinear separating boundary as the black curved line.\n", |
| 87 | + "\n", |
| 88 | + "<!-- dom:FIGURE: [fig-machine_learning/ensemble_001.png, width=500 frac=0.75]\n", |
| 89 | + "Two regions in the plane are separated by a nonlinear boundary. The training\n", |
| 90 | + "data is sampled from this plane. The objective is to correctly classify the so-\n", |
| 91 | + "sampled data. <div id=\"fig:ensemble_001\"></div> -->\n", |
| 92 | + "<!-- begin figure -->\n", |
| 93 | + "<div id=\"fig:ensemble_001\"></div>\n", |
| 94 | + "\n", |
| 95 | + "<p>Two regions in the plane are separated by a nonlinear boundary. The training\n", |
| 96 | + "data is sampled from this plane. The objective is to correctly classify the so-\n", |
| 97 | + "sampled data.</p>\n", |
| 98 | + "<img src=\"fig-machine_learning/ensemble_001.png\" width=500>\n", |
| 99 | + "\n", |
| 100 | + "<!-- end figure -->\n", |
| 101 | + "\n", |
| 102 | + "\n", |
| 103 | + "\n", |
| 104 | + "\n", |
| 105 | + "The problem is to take samples from each of these regions and\n", |
| 106 | + "classify them correctly using a perceptron. A perceptron is the simplest\n", |
| 107 | + "possible linear classifier that finds a line in the plane to separate two\n", |
| 108 | + "purported categories. Because the separating boundary is nonlinear, there is no\n", |
| 109 | + "way that the perceptron can completely solve this problem. The following code\n", |
| 110 | + "sets up the perceptron available in Scikit-learn." |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": 2, |
| 116 | + "metadata": { |
| 117 | + "attributes": { |
| 118 | + "classes": [], |
| 119 | + "id": "", |
| 120 | + "n": "2" |
| 121 | + } |
| 122 | + }, |
| 123 | + "outputs": [ |
| 124 | + { |
| 125 | + "data": { |
| 126 | + "text/plain": [ |
| 127 | + "Perceptron(alpha=0.0001, class_weight=None, eta0=1.0, fit_intercept=True,\n", |
| 128 | + " max_iter=None, n_iter=None, n_jobs=1, penalty=None, random_state=0,\n", |
| 129 | + " shuffle=True, tol=None, verbose=0, warm_start=False)" |
| 130 | + ] |
| 131 | + }, |
| 132 | + "execution_count": 2, |
| 133 | + "metadata": {}, |
| 134 | + "output_type": "execute_result" |
| 135 | + } |
| 136 | + ], |
| 137 | + "source": [ |
| 138 | + "from sklearn.linear_model import Perceptron\n", |
| 139 | + "p=Perceptron()\n", |
| 140 | + "p" |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "markdown", |
| 145 | + "metadata": {}, |
| 146 | + "source": [ |
| 147 | + "The training data and the resulting perceptron separating boundary\n", |
| 148 | + "are shown in [Figure](#fig:ensemble_002). The circles and crosses are the\n", |
| 149 | + "sampled training data and the gray separating line is the perceptron's\n", |
| 150 | + "separating boundary between the two categories. The black squares are those\n", |
| 151 | + "elements in the training data that the perceptron mis-classified. Because the\n", |
| 152 | + "perceptron can only produce linear separating boundaries, and the boundary in\n", |
| 153 | + "this case is non-linear, the perceptron makes mistakes near where the\n", |
| 154 | + "boundary curves. The next step is to see how bagging can\n", |
| 155 | + "improve upon this by using multiple perceptrons.\n", |
| 156 | + "\n", |
| 157 | + "<!-- dom:FIGURE: [fig-machine_learning/ensemble_002.png, width=500 frac=0.75]\n", |
| 158 | + "The perceptron finds the best linear boundary between the two classes. <div\n", |
| 159 | + "id=\"fig:ensemble_002\"></div> -->\n", |
| 160 | + "<!-- begin figure -->\n", |
| 161 | + "<div id=\"fig:ensemble_002\"></div>\n", |
| 162 | + "\n", |
| 163 | + "<p>The perceptron finds the best linear boundary between the two classes.</p>\n", |
| 164 | + "<img src=\"fig-machine_learning/ensemble_002.png\" width=500>\n", |
| 165 | + "\n", |
| 166 | + "<!-- end figure -->\n", |
| 167 | + "\n", |
| 168 | + "\n", |
| 169 | + "The following code sets up the bagging classifier in Scikit-learn. Here we\n", |
| 170 | + "select only three perceptrons. [Figure](#fig:ensemble_003) shows each of the\n", |
| 171 | + "three individual classifiers and the final bagged classifer in the panel on the\n", |
| 172 | + "bottom right. As before, the black circles indicate misclassifications in the\n", |
| 173 | + "training data. Joint classifications are determined by majority voting." |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "code", |
| 178 | + "execution_count": 3, |
| 179 | + "metadata": { |
| 180 | + "attributes": { |
| 181 | + "classes": [], |
| 182 | + "id": "", |
| 183 | + "n": "3" |
| 184 | + } |
| 185 | + }, |
| 186 | + "outputs": [ |
| 187 | + { |
| 188 | + "data": { |
| 189 | + "text/plain": [ |
| 190 | + "BaggingClassifier(base_estimator=Perceptron(alpha=0.0001, class_weight=None, eta0=1.0, fit_intercept=True,\n", |
| 191 | + " max_iter=None, n_iter=None, n_jobs=1, penalty=None, random_state=0,\n", |
| 192 | + " shuffle=True, tol=None, verbose=0, warm_start=False),\n", |
| 193 | + " bootstrap=True, bootstrap_features=False, max_features=1.0,\n", |
| 194 | + " max_samples=0.5, n_estimators=3, n_jobs=1, oob_score=False,\n", |
| 195 | + " random_state=None, verbose=0, warm_start=False)" |
| 196 | + ] |
| 197 | + }, |
| 198 | + "execution_count": 3, |
| 199 | + "metadata": {}, |
| 200 | + "output_type": "execute_result" |
| 201 | + } |
| 202 | + ], |
| 203 | + "source": [ |
| 204 | + "from sklearn.ensemble import BaggingClassifier\n", |
| 205 | + "bp = BaggingClassifier(Perceptron(),max_samples=0.50,n_estimators=3)\n", |
| 206 | + "bp" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "markdown", |
| 211 | + "metadata": {}, |
| 212 | + "source": [ |
| 213 | + "<!-- dom:FIGURE: [fig-machine_learning/ensemble_003.png, width=500 frac=0.85]\n", |
| 214 | + "Each panel with the single gray line is one of the perceptrons used for the\n", |
| 215 | + "ensemble bagging classifier on the lower right. <div\n", |
| 216 | + "id=\"fig:ensemble_003\"></div> -->\n", |
| 217 | + "<!-- begin figure -->\n", |
| 218 | + "<div id=\"fig:ensemble_003\"></div>\n", |
| 219 | + "\n", |
| 220 | + "<p>Each panel with the single gray line is one of the perceptrons used for the\n", |
| 221 | + "ensemble bagging classifier on the lower right.</p>\n", |
| 222 | + "<img src=\"fig-machine_learning/ensemble_003.png\" width=500>\n", |
| 223 | + "\n", |
| 224 | + "<!-- end figure -->\n", |
| 225 | + "\n", |
| 226 | + "\n", |
| 227 | + "The `BaggingClassifier` can estimate its own out-of-sample error if passed the\n", |
| 228 | + "`oob_score=True` flag upon construction. This keeps track of which samples were\n", |
| 229 | + "used for training and which were not, and then estimates the out-of-sample\n", |
| 230 | + "error using those samples that were unused in training. The `max_samples`\n", |
| 231 | + "keyword argument specifies the number of items from the training set to use for\n", |
| 232 | + "the base classifier. The smaller the `max_samples` used in the bagging\n", |
| 233 | + "classifier, the better the out-of-sample error estimate, but at the cost of\n", |
| 234 | + "worse in-sample performance. Of course, this depends on the overall number of\n", |
| 235 | + "samples and the degrees-of-freedom in each individual classifier. The\n", |
| 236 | + "VC-dimension surfaces again!\n", |
| 237 | + "\n", |
| 238 | + "## Boosting\n", |
| 239 | + "\n", |
| 240 | + "\n", |
| 241 | + "As we discussed, bagging is particularly effective for individual high-variance\n", |
| 242 | + "classifiers because the final majority-vote tends to smooth out the individual\n", |
| 243 | + "classifiers and produce a more stable collaborative solution. On the other\n", |
| 244 | + "hand, boosting is particularly effective for high-bias classifiers that are\n", |
| 245 | + "slow to adjust to new data. On the one hand, boosting is similiar to bagging in\n", |
| 246 | + "that it uses a majority-voting (or averaging for numeric prediction) process at\n", |
| 247 | + "the end; and it also combines individual classifiers of the same type. On the\n", |
| 248 | + "other hand, boosting is serially iterative, whereas the individual classifiers\n", |
| 249 | + "in bagging can be trained in parallel. Boosting uses the misclassifications of\n", |
| 250 | + "prior iterations to influence the training of the next iterative classifier by\n", |
| 251 | + "weighting those misclassifications more heavily in subsequent steps. This means\n", |
| 252 | + "that, at every step, boosting focuses more and more on specific\n", |
| 253 | + "misclassifications up to that point, letting the prior classifications\n", |
| 254 | + "be carried by earlier iterations.\n", |
| 255 | + "\n", |
| 256 | + "\n", |
| 257 | + "The primary implementation for boosting in Scikit-learn is the Adaptive\n", |
| 258 | + "Boosting (*AdaBoost*) algorithm, which does classification\n", |
| 259 | + "(`AdaBoostClassifier`) and regression (`AdaBoostRegressor`). The first step in\n", |
| 260 | + "the basic AdaBoost algorithm is to initialize the weights over each of the\n", |
| 261 | + "training set indicies, $D_0(i)=1/n$ where there are $n$ elements in the\n", |
| 262 | + "training set. Note that this creates a discrete uniform distribution over the\n", |
| 263 | + "*indicies*, not over the training data $\\lbrace (x_i,y_i) \\rbrace$ itself. In\n", |
| 264 | + "other words, if there are repeated elements in the training data, then each\n", |
| 265 | + "gets its own weight. The next step is to train the base classifer $h_k$ and\n", |
| 266 | + "record the classification error at the $k^{th}$ iteration, $\\epsilon_k$. Two\n", |
| 267 | + "factors can next be calculated using $\\epsilon_k$,\n", |
| 268 | + "\n", |
| 269 | + "$$\n", |
| 270 | + "\\alpha_k = \\frac{1}{2}\\log \\frac{1-\\epsilon_k}{\\epsilon_k}\n", |
| 271 | + "$$\n", |
| 272 | + "\n", |
| 273 | + " and the normalization factor,\n", |
| 274 | + "\n", |
| 275 | + "$$\n", |
| 276 | + "Z_k = 2 \\sqrt{ \\epsilon_k (1- \\epsilon_k) }\n", |
| 277 | + "$$\n", |
| 278 | + "\n", |
| 279 | + " For the next step, the weights over the training data are updated as\n", |
| 280 | + "in the following,\n", |
| 281 | + "\n", |
| 282 | + "$$\n", |
| 283 | + "D_{k+1}(i) = \\frac{1}{Z_k} D_k(i)\\exp{(-\\alpha_k y_i h_k(x_i))}\n", |
| 284 | + "$$\n", |
| 285 | + "\n", |
| 286 | + " The final classification result is assembled using the $\\alpha_k$\n", |
| 287 | + "factors, $g = \\sgn(\\sum_{k} \\alpha_k h_k)$.\n", |
| 288 | + "\n", |
| 289 | + "To re-do the problem above using boosting with perceptrons, we set up the\n", |
| 290 | + "AdaBoost classifier in the following," |
| 291 | + ] |
| 292 | + }, |
| 293 | + { |
| 294 | + "cell_type": "code", |
| 295 | + "execution_count": 4, |
| 296 | + "metadata": { |
| 297 | + "attributes": { |
| 298 | + "classes": [], |
| 299 | + "id": "", |
| 300 | + "n": "4" |
| 301 | + } |
| 302 | + }, |
| 303 | + "outputs": [ |
| 304 | + { |
| 305 | + "data": { |
| 306 | + "text/plain": [ |
| 307 | + "AdaBoostClassifier(algorithm='SAMME',\n", |
| 308 | + " base_estimator=Perceptron(alpha=0.0001, class_weight=None, eta0=1.0, fit_intercept=True,\n", |
| 309 | + " max_iter=None, n_iter=None, n_jobs=1, penalty=None, random_state=0,\n", |
| 310 | + " shuffle=True, tol=None, verbose=0, warm_start=False),\n", |
| 311 | + " learning_rate=0.5, n_estimators=3, random_state=None)" |
| 312 | + ] |
| 313 | + }, |
| 314 | + "execution_count": 4, |
| 315 | + "metadata": {}, |
| 316 | + "output_type": "execute_result" |
| 317 | + } |
| 318 | + ], |
| 319 | + "source": [ |
| 320 | + "from sklearn.ensemble import AdaBoostClassifier\n", |
| 321 | + "clf=AdaBoostClassifier(Perceptron(),n_estimators=3,\n", |
| 322 | + " algorithm='SAMME',\n", |
| 323 | + " learning_rate=0.5)\n", |
| 324 | + "clf" |
| 325 | + ] |
| 326 | + }, |
| 327 | + { |
| 328 | + "cell_type": "markdown", |
| 329 | + "metadata": {}, |
| 330 | + "source": [ |
| 331 | + "The `learning_rate` above controls how aggressively the weights are\n", |
| 332 | + "updated. The resulting classification boundaries for the embedded perceptrons\n", |
| 333 | + "are shown in [Figure](#fig:ensemble_004). Compare this to the lower right\n", |
| 334 | + "panel in [Figure](#fig:ensemble_003). The performance for both cases is about\n", |
| 335 | + "the same. The IPython notebook corresponding to this section has more details\n", |
| 336 | + "and the full listing of code used to produce all these figures.\n", |
| 337 | + "\n", |
| 338 | + "<!-- dom:FIGURE: [fig-machine_learning/ensemble_004.png, width=500 frac=0.75]\n", |
| 339 | + "The individual perceptron classifiers embedded in the AdaBoost classifier are\n", |
| 340 | + "shown along with the mis-classified points (in black). Compare this to the lower\n", |
| 341 | + "right panel of [Figure](#fig:ensemble_003). <div id=\"fig:ensemble_004\"></div>\n", |
| 342 | + "-->\n", |
| 343 | + "<!-- begin figure -->\n", |
| 344 | + "<div id=\"fig:ensemble_004\"></div>\n", |
| 345 | + "\n", |
| 346 | + "<p>The individual perceptron classifiers embedded in the AdaBoost classifier are\n", |
| 347 | + "shown along with the mis-classified points (in black). Compare this to the lower\n", |
| 348 | + "right panel of [Figure](#fig:ensemble_003).</p>\n", |
| 349 | + "<img src=\"fig-machine_learning/ensemble_004.png\" width=500>\n", |
| 350 | + "\n", |
| 351 | + "<!-- end figure -->" |
| 352 | + ] |
| 353 | + }, |
| 354 | + { |
| 355 | + "cell_type": "code", |
| 356 | + "execution_count": null, |
| 357 | + "metadata": { |
| 358 | + "collapsed": true |
| 359 | + }, |
| 360 | + "outputs": [], |
| 361 | + "source": [] |
| 362 | + } |
| 363 | + ], |
| 364 | + "metadata": { |
| 365 | + "kernelspec": { |
| 366 | + "display_name": "Python 3", |
| 367 | + "language": "python", |
| 368 | + "name": "python3" |
| 369 | + }, |
| 370 | + "language_info": { |
| 371 | + "codemirror_mode": { |
| 372 | + "name": "ipython", |
| 373 | + "version": 3 |
| 374 | + }, |
| 375 | + "file_extension": ".py", |
| 376 | + "mimetype": "text/x-python", |
| 377 | + "name": "python", |
| 378 | + "nbconvert_exporter": "python", |
| 379 | + "pygments_lexer": "ipython3", |
| 380 | + "version": "3.5.4" |
| 381 | + } |
| 382 | + }, |
| 383 | + "nbformat": 4, |
| 384 | + "nbformat_minor": 2 |
| 385 | +} |
0 commit comments