Not sure if that is the correct terminology. Basically trying to take a black and white image and first transform it such that all the white pixels that border black-pixels remain white, else turn black. That part of the program works fine, and is done in find_edges. Next I need to calculate the distance from each element in the image to the closest white-pixel. Right now I am doing it by using a for-loop that is insanely slow. Is there a way to make the find_nearest_edge function written solely with numpy without the need for a for-loop to call it on each element? Thanks.
####
from PIL import Image
import numpy as np
from scipy.ndimage import binary_erosion
####
def find_nearest_edge(arr, point):
w, h = arr.shape
x, y = point
xcoords, ycoords = np.meshgrid(np.arange(w), np.arange(h))
target = np.sqrt((xcoords - x)**2 + (ycoords - y)**2)
target[arr == 0] = np.inf
shortest_distance = np.min(target[target > 0.0])
return shortest_distance
def find_edges(img):
img = img.convert('L')
img_np = np.array(img)
kernel = np.ones((3,3))
edges = img_np - binary_erosion(img_np, kernel)*255
return edges
a = Image.open('a.png')
x, y = a.size
edges = find_edges(a)
out = Image.fromarray(edges.astype('uint8'), 'L')
out.save('b.png')
dists =[]
for _x in range(x):
for _y in range(y):
dist = find_nearest_edge(edges,(_x,_y))
dists.append(dist)
print(dists)
Images:


