Currently I am iterating over one array and for each value in this array I am looking for the closest value at the corresponding point in another array that is within a region surrounding the corresponding point.
In summary: For any point in an array, how far away from a corresponding point in another array do you need to go to get the same value.
The code seems to work well for small arrays, however I am working now with 1024x768 arrays, leading me to wait a long time for each run....
Any help or advice would be greatly appreciated as I have been on this for a while!!
Example matrix in format Im using: np.array[[1,2],[3,4]]
#Distance to agreement
#Used later to define a region of pixels around a corresponding point
#to iterate over:
DTA = 26
#To account for noise in pixels - doesnt have to find the exact value,
#just one within +/-130 of it.
limit = 130
#Containers for all pixel value matches and also the smallest distance
#to pixel match
Dist = []
Dist_min = []
#Continer matrix for gamma pass/fail values
Dist_to_agree = np.zeros((i_size,j_size))
#i,j indexes the reference matrix (x), ii,jj indexes the measured
#matrix(y). Finds a match within the limits,
#appends the distance to the match into Dist.
#Then find the minimum distance to a match for that pixel and append it
#to dist_min
for i, k in enumerate(x):
for j, l in enumerate(k):
#added 10 packing to y matrix, so need to shift it by 10 in i&j
for ii in range((i+10)-DTA,(i+10)+DTA):
for jj in range((j+10)-DTA,(j+10)+DTA):
#If the pixel value is within a range to account for noise,
#let it be "found"
if (y[ii,jj]-limit) <= x[i,j] <= (y[ii,jj]+limit):
#Calculating distance
dist_eu = sqrt(((i)-(ii))**2 + ((j) - (jj))**2)
Dist.append(dist_eu)
#If a value cannot be found within the noise range,
#append 10 = instant fail.
else:
Dist.append(10)
try:
Dist_min.append(min(Dist))
Dist_to_agree[i,j] = min(Dist)
except ValueError:
pass
#Need to reset container or previous values will also be
#accounted for when finding minimum
Dist = []
print Dist_to_agree
for jj in range(...)loop. Often this happens on Stackoverflow when copy/pasting code, and sometimes, the copy/paste renders that way here because you're mixing spaces and tabs in the source -- You might want to check :-)ii,jjwindow with numpy array operations, rather than point by point. Treatiias vector of values.