QuTiP example: Bloch-Redfield Master Equation¶
In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
In [2]:
import numpy as np
In [3]:
from qutip import *
Two-level system¶
In [4]:
delta = 0.0 * 2 * np.pi
epsilon = 0.5 * 2 * np.pi
gamma = 0.25
times = np.linspace(0, 10, 100)
In [5]:
H = delta/2 * sigmax() + epsilon/2 * sigmaz()
H
Out[5]:
Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True\begin{equation*}\left(\begin{array}{*{11}c}1.571 & 0.0\\0.0 & -1.571\\\end{array}\right)\end{equation*}
In [6]:
psi0 = (2 * basis(2, 0) + basis(2, 1)).unit()
In [7]:
c_ops = [np.sqrt(gamma) * sigmam()]
a_ops = [sigmax()]
In [8]:
e_ops = [sigmax(), sigmay(), sigmaz()]
In [9]:
result_me = mesolve(H, psi0, times, c_ops, e_ops)
In [10]:
result_brme = brmesolve(H, psi0, times, a_ops, e_ops, spectra_cb=[lambda w : gamma * (w > 0)])
In [11]:
plot_expectation_values([result_me, result_brme]);
In [12]:
b = Bloch()
b.add_points(result_me.expect, meth='l')
b.add_points(result_brme.expect, meth='l')
b.make_sphere()
Harmonic oscillator¶
In [13]:
N = 10
w0 = 1.0 * 2 * np.pi
g = 0.05 * w0
kappa = 0.15
times = np.linspace(0, 25, 1000)
In [14]:
a = destroy(N)
In [15]:
H = w0 * a.dag() * a + g * (a + a.dag())
In [16]:
# start in a superposition state
psi0 = ket2dm((basis(N, 4) + basis(N, 2) + basis(N,0)).unit())
In [19]:
c_ops = [np.sqrt(kappa) * a]
a_ops = [[a + a.dag(),lambda w : kappa * (w > 0)]]
In [20]:
e_ops = [a.dag() * a, a + a.dag()]
Zero temperature¶
In [21]:
result_me = mesolve(H, psi0, times, c_ops, e_ops)
In [22]:
result_brme = brmesolve(H, psi0, times, a_ops, e_ops)
In [23]:
plot_expectation_values([result_me, result_brme]);
Finite temperature¶
In [24]:
times = np.linspace(0, 25, 250)
In [27]:
n_th = 1.5
c_ops = [np.sqrt(kappa * (n_th + 1)) * a, np.sqrt(kappa * n_th) * a.dag()]
In [28]:
result_me = mesolve(H, psi0, times, c_ops, e_ops)
In [29]:
w_th = w0/np.log(1 + 1/n_th)
def S_w(w):
if w >= 0:
return (n_th + 1) * kappa
else:
return (n_th + 1) * kappa * np.exp(w / w_th)
a_ops = [[a + a.dag(),S_w]]
In [30]:
result_brme = brmesolve(H, psi0, times, a_ops, e_ops)
In [31]:
plot_expectation_values([result_me, result_brme]);
Storing states instead of expectation values¶
In [32]:
result_me = mesolve(H, psi0, times, c_ops, [])
In [33]:
result_brme = brmesolve(H, psi0, times, a_ops, [])
In [34]:
n_me = expect(a.dag() * a, result_me.states)
In [35]:
n_brme = expect(a.dag() * a, result_brme.states)
In [36]:
fig, ax = plt.subplots()
ax.plot(times, n_me, label='me')
ax.plot(times, n_brme, label='brme')
ax.legend()
ax.set_xlabel("t");
Atom-Cavity¶
In [37]:
N = 10
a = tensor(destroy(N), identity(2))
sm = tensor(identity(N), destroy(2))
psi0 = ket2dm(tensor(basis(N, 1), basis(2, 0)))
e_ops = [a.dag() * a, sm.dag() * sm]
Weak coupling¶
In [38]:
w0 = 1.0 * 2 * np.pi
g = 0.05 * 2 * np.pi
kappa = 0.05
times = np.linspace(0, 5 * 2 * np.pi / g, 1000)
a_ops = [[(a + a.dag()),lambda w : kappa*(w > 0)]]
In [39]:
c_ops = [np.sqrt(kappa) * a]
H = w0 * a.dag() * a + w0 * sm.dag() * sm + g * (a + a.dag()) * (sm + sm.dag())
In [40]:
result_me = mesolve(H, psi0, times, c_ops, e_ops)
In [41]:
result_brme = brmesolve(H, psi0, times, a_ops, e_ops)
In [42]:
plot_expectation_values([result_me, result_brme]);
In the weak coupling regime there is no significant difference between the Lindblad master equation and the Bloch-Redfield master equation.
Strong coupling¶
In [43]:
w0 = 1.0 * 2 * np.pi
g = 0.75 * 2 * np.pi
kappa = 0.05
times = np.linspace(0, 5 * 2 * np.pi / g, 1000)
In [44]:
c_ops = [np.sqrt(kappa) * a]
H = w0 * a.dag() * a + w0 * sm.dag() * sm + g * (a + a.dag()) * (sm + sm.dag())
In [45]:
result_me = mesolve(H, psi0, times, c_ops, e_ops)
In [48]:
result_brme = brmesolve(H, psi0, times, a_ops, e_ops)
In [49]:
plot_expectation_values([result_me, result_brme]);
In the strong coupling regime there are some corrections to the Lindblad master equation that is due to the fact system eigenstates are hybridized states with both atomic and cavity contributions.
Versions¶
In [50]:
from qutip.ipynbtools import version_table
version_table()
Out[50]:
| Software | Version |
|---|---|
| QuTiP | 4.2.0 |
| Numpy | 1.13.1 |
| SciPy | 0.19.1 |
| matplotlib | 2.0.2 |
| Cython | 0.25.2 |
| Number of CPUs | 2 |
| BLAS Info | INTEL MKL |
| IPython | 6.1.0 |
| Python | 3.6.1 |Anaconda custom (x86_64)| (default, May 11 2017, 13:04:09) [GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] |
| OS | posix [darwin] |
| Wed Jul 19 22:10:15 2017 MDT | |
In [ ]: