This notebook was prepared by Donne Martin. Source and license info is on GitHub.
Solution Notebook¶
Problem: Given a list of stock prices, find the max profit from 1 buy and 1 sell.¶
Constraints¶
- Are all prices positive ints?
- Yes
- Is the output an int?
- Yes
- If profit is negative, do we return the smallest negative loss?
- Yes
- If there are less than two prices, what do we return?
- Exception
- Can we assume the inputs are valid?
- No
- Can we assume this fits memory?
- Yes
Test Cases¶
- None -> TypeError
- Zero or one price -> ValueError
- No profit
- [8, 5, 3, 2, 1] -> -1
- General case
- [5, 3, 7, 4, 2, 6, 9] -> 7
Algorithm¶
We'll use a greedy approach and iterate through the prices once.
- Loop through the prices
- Update current profit (price = min_price)
- Update the min price
- Update the max profit
- Return max profit
Complexity:
- Time: O(n)
- Space: O(1)
Code¶
In [1]:
import sys
class Solution(object):
def find_max_profit(self, prices):
if prices is None:
raise TypeError('prices cannot be None')
if len(prices) < 2:
raise ValueError('prices must have at least two values')
min_price = prices.pop(0)
max_profit = prices[0] - min_price
for price in prices:
profit = price - min_price
min_price = min(price, min_price)
max_profit = max(profit, max_profit)
return max_profit
Unit Test¶
In [2]:
%%writefile test_max_profit.py
import unittest
class TestMaxProfit(unittest.TestCase):
def test_max_profit(self):
solution = Solution()
self.assertRaises(TypeError, solution.find_max_profit, None)
self.assertRaises(ValueError, solution.find_max_profit, [])
self.assertEqual(solution.find_max_profit([8, 5, 3, 2, 1]), -1)
self.assertEqual(solution.find_max_profit([5, 3, 7, 4, 2, 6, 9]), 7)
print('Success: test_max_profit')
def main():
test = TestMaxProfit()
test.test_max_profit()
if __name__ == '__main__':
main()
Overwriting test_max_profit.py
In [3]:
%run -i test_max_profit.py
Success: test_max_profit