Author: Manibala Sinha Tech Stack: Python, FastAPI, OpenAI API, FAISS / ChromaDB, LangChain, Docker
Retrieval-Augmented Generation (RAG) pipeline built using FastAPI and OpenAI’s API.
It enables intelligent question-answering over custom document corpora, such as PDFs, text manuals, or engineering files — simulating how field operators or engineers can query technical data in real time.
Designed with scalable microservices principles, the system can be containerized with Docker and deployed on Kubernetes / EKS or OpenShift.
┌─────────────────────┐
│ Document Loader │ ← PDF, text, or well files
└─────────┬───────────┘
│
▼
┌─────────────────────┐
│ Embedding Model │ ← OpenAI / SentenceTransformer
└─────────┬───────────┘
│
▼
┌─────────────────────┐
│ Vector Database │ ← FAISS / ChromaDB / Milvus
└─────────┬───────────┘
│
▼
┌─────────────────────┐
│ Retriever Layer │
└─────────┬───────────┘
│
▼
┌─────────────────────┐
│ OpenAI GPT (LLM) │ ← Generates final contextual answer
└─────────────────────┘
Document Ingestion – Upload or load domain documents (PDF, TXT, CSV).
Vector Store Indexing – Store embeddings using FAISS or Chroma for fast retrieval.
Contextual Q&A – Ask domain-specific questions and get concise, source-aware answers.
API Endpoint – Expose a /query endpoint via FastAPI for external integration.
Configurable Models – Easily switch between OpenAI, Hugging Face, or local models.
Scalable & Deployable – Dockerized for deployment on any cloud (AWS, GCP, Azure).
| Component | Technology |
|---|---|
| Language | Python 3.10+ |
| Framework | FastAPI |
| LLM Integration | OpenAI GPT Models |
| Vector DB | FAISS / ChromaDB (can extend to Milvus / OpenSearch) |
| Embeddings | OpenAI Embeddings / Sentence Transformers |
| Containerization | Docker |
| Infrastructure (Optional) | Kubernetes, EKS, Terraform |
| CI/CD (Optional) | GitHub Actions, ArgoCD |
git clone https://github.com/ManibalaSinha/OpenAI.git
cd OpenAI
git checkout feature_branchpython -m venv venv
source venv/bin/activate # or venv\Scripts\activate on Windows
pip install -r requirements.txtCreate a .env file:
OPENAI_API_KEY=your_api_key_here
VECTOR_DB=chroma # or faissuvicorn main:app --reloadcurl -X POST "http://127.0.0.1:8000/query" \
-H "Content-Type: application/json" \
-d '{"question": "What is the procedure for pump maintenance?"}'- Energy Operations: Ask about well files, safety manuals, or regulatory filings.
- Industrial Applications: Query process documents or equipment SOPs.
- Corporate Knowledge Base: Enable semantic Q&A across internal wikis or handbooks.
Docker Build
docker build -t openai-rag-pipeline .
docker run -p 8000:8000 openai-rag-pipelineKubernetes Example
kubectl apply -f k8s/deployment.yaml- Integrate Milvus / OpenSearch for enterprise-scale retrieval
- Add GPU inference optimization via VLLM or TensorRT
- Incorporate RLHF / Agentic workflows for adaptive reasoning
- Support Azure ML / AWS SageMaker deployments